Площадь поверхности тела вращения. Нахождение площади поверхности тел вращения

Данная формула называется формулой объема тела по площади параллельных сечений.

Пример. Найти объем эллипсоида x 2 + y 2 + z 2 = 1 . a 2b 2c 2

Рассекая эллипсоид плоскостью, параллельной плоскости Oyz и на расстояниих от нее (-а ≤х ≤а ), получим эллипс (см. рис. 15):

Площадь этого эллипса равна

S(x) = π bc1

Поэтому, по формуле (16), имеем

Вычисление площади поверхности вращения

Пусть кривая АВ является графиком функцииу = f (x ) ≥ 0, гдех [а ,b ], a функцияу = f (x ) и её производнаяу" = f" (x ) непрерывны на этом отрезке.

Тогда площадь S поверхности, образованной вращением кривойАВ вокруг осиОх вычисляется по формуле

2 π

1 +(y ′) 2 dx .

Если кривая АВ задана параметрическими уравнениямих = x (t ),у = у (t ),t 1 ≤t ≤t 2 , то формула для площади поверхности вращения принимает вид

S x = 2 π ∫ y (t )(x ′ (t ))2 + (y ′ (t ))2 dt .

Пример Найти площадь поверхности шара радиуса R. Решение:

Можно считать, что поверхность шара образована вращением полуокружности y = R 2 − x 2 ,- R ≤х ≤R , вокруг осиОх. По формуле (19) находим

− x

S = 2 π

R 2− x 21 +

dx =

− x

− R

2 π ∫ R2 − x2 + x2 dx= 2 π Rx− R R = 4 π R2 .

−R

Пример . Дана циклоида x = a (t − sin t ) , 0 ≤ t ≤ 2 π . y = a (1− cost ) ,

Найти площадь поверхности, образованной вращением её вокруг оси Ох. Решение:

При вращении половины дуги циклоиды вокруг оси Ох площадь поверхности вращения равна

1 S x

2π π ∫ a (1− cost )

(a(1 − cos t)) 2 + (asin t) 2 dt=

2π ∫ π a 2

2 sin2 t

2 cost + cos2

t + sin 2 tdt=

4 π a 2

π ∫ sin2

2 2sin2 t dt = 8π a 2

π ∫ sin2 t

sin t

dt =

= −8 π a 2 ∫

− cos

d cos

= − 16 π a

32π a

= −16 π a

0 −

1− 0+

= −16 π a

1 S x = 32 π a 2 . Следовательно,

64 π a 2 .

Вычисление длины дуги плоской кривой

Прямоугольные координаты

Пусть в дугу, когда число звеньев ломаной неограниченно возрастает, а длина наибольшего прямоугольных координатах дана плоская кривая АВ, уравнение которой у = f(x), где, а ≤ х≤ b.

Под длиной дуги АВ понимается предел, к которому стремится длина ломаной линии, вписанной в эту звена ее стремится к нулю. Покажем, что если функция у = f(x) и ее производная y′ = f′ (x) непрерывны на отрезке [а ,b ], то криваяАВ имеет длину, равную

Если уравнение кривой АВ задано в параметрической форме

x = x(t) , α ≤ t ≤ β , y= y(t) ,

где x (t ) иy (t ) – непрерывные функции с непрерывными производными иx (α ) =а, x (β ) =b , то длинаl кривойАВ находится по формуле

(x ′ (t ))2 + (y ′ (t ))2 dt . = R arcsin

π .

− x

Значит, l = 2π R. Если уравнение окружности записать в параметрическом видех = R cost, у = R sint (0 ≤t ≤ 2π ), то

(− Rsin t) 2 + (Rcos t) 2 dt= Rt0 2 π = 2 π R.

l = ∫

Полярные координаты

Пусть кривая АВ задана уравнением в полярных координатахr =r (ϕ ),α ≤ ϕ ≤ β . Предположим, чтоr (ϕ ) иr" (ϕ ) непрерывны на отрезке [α ,β ].

Если в равенствах х = r cosϕ ,у =r sinϕ , связывающих полярные и декартовы координаты,

параметром считать угол ϕ , то кривуюАВ можно задать параметрическиx = r (ϕ ) cos ϕ ,

y = r (ϕ ) sinϕ .

Применяя формулу (15), получаем l = ∫ r 2 + r ′ 2 d ϕ .

Пример Найти длину кардиоиды r =a (1 + cosϕ ). Решение:

Кардиоида r =a (1 + cosϕ ) имеет вид, изображенный на рисунке 14. Она симметрична относительно полярной оси. Найдем половину длины кардиоиды:

1 l =

π∫

(a (1 + cos ϕ ))2 + (a (− sin ϕ ))2 d ϕ =

A π ∫

2 + 2cosϕ d ϕ =a π ∫

2 2cos2 ϕ d ϕ =

2a π ∫ cosϕ d ϕ = 4a sinϕ

Таким образом, 1 2 l = 4 a . Значит,l = 8а.

5. Нахождение площади поверхности тел вращения

Пусть кривая АВ является графиком функции у = f(х) ≥ 0, где х [а; b], а функция у = f(х) и ее производная у" = f"(х) непрерывны на этом отрезке.

Найдем площадь S поверхности, образованной вращением кривой АВ вокруг оси Ох (рис 8).

Применим схему II (метод дифференциала).

Через произвольную точку х [а; b] проведем плоскость П, перпендикулярную оси Ох. Плоскость П пересекает поверхность вращения по окружности с радиусом у – f(х). Величина S поверхности части фигуры вращения, лежащей левее плоскости, является функцией от х, т.е. s = s(х) (s(а) = 0 и s(b) = S).

Дадим аргументу х приращение Δх = dх. Через точку х + dх [а; b] также проведем плоскость, перпендикулярную оси Ох. Функция s = s(х) получит приращение Δs, изображенного на рисунке в виде «пояска».


Найдем дифференциал площади ds, заменяя образованную между сечениями фигуру усеченным конусом, образующая которого равна dl, а радиусы оснований равны у и у + dу. Площадь его боковой поверхности равна: = 2ydl + dydl.

Отбрасывая произведение dу d1 как бесконечно малую высшего порядка, чем ds, получаем ds = 2уdl, или, так как d1 = dx.

Интегрируя полученное равенство в пределах от х = а до х = b, получаем

Если кривая AB задана параметрическими уравнениями x = x(t), y = y(t), t≤ t ≤ t, то формула для площади поверхности вращения принимает вид

S = 2dt.

Пример: Найти площадь поверхности шара радиуса R.

S=2 =

6. Нахождение работы переменной силы

Работа переменной силы

Пусть материальная точка М перемещается вдоль оси Ох под действием переменной силы F = F(х), направленной параллельно этой оси. Работа, произведенная силой при перемещении точки М из положения х = а в положение х = b (а

Какую работу нужно затратить, чтобы растянуть пружину на 0,05 м, если сила 100 Н растягивает пружину на 0,01 м?

По закону Гука упругая сила, растягивающая пружину, пропорциональна этому растяжению х, т.е. F = kх, где k – коэффициент пропорциональности. Согласно условию задачи, сила F = 100 Н растягивает пружину на х = 0,01 м; следовательно, 100 = k 0,01, откуда k = 10000; следовательно, F =10000х.

Искомая работа на основании формулы


A =

Найти работу, которую необходимо затратить, чтобы выкачать через край жидкость из вертикального цилиндрического резервуара высоты Н м и радиусом основания R м (рис 13).

Работа, затрачиваемая на поднятие тела весом р на высоту h, равна р Н. Но различные слои жидкости в резервуаре находятся на различных глубинах и высота поднятия (до края резервуара) различных слоев не одинакова.

Для решения поставленной задачи применим схему II (метод дифференциала). Введем систему координат.

1) Работа, затрачиваемая на выкачивание из резервуара слоя жидкости толщиной х (0 ≤ х ≤ Н), есть функция от х, т.е. А = А(х), где (0 ≤ х ≤ Н) (A(0) = 0, A(H) = А 0).

2) Находим главную часть приращения ΔA при изменении х на величину Δх = dx, т.е. находим дифференциал dА функции А(х).

Ввиду малости dх считаем, что «элементарный» слой жидкости находится на одной глубине х (от края резервуара). Тогда dА = dрх, где dр – вес этого слоя; он равен g АV, где g – ускорение свободного падения, – плотность жидкости, dv – объем «элементарного» слоя жидкости (на рисунке он выделен), т.е. dр = g. Объем указанного слоя жидкости, очевидно, равен , где dx – высота цилиндра (слоя), – площадь его основания, т.е. dv = .

Таким образом, dр = . и

3) Интегрируя полученное равенство в пределах от х = 0 до х = Н, находим

A

8. Вычисление интегралов с помощью пакета MathCAD

При решении некоторых прикладных задач требуется использовать операцию символического интегрирования. При этом программа MathCad может пригодиться как на начальном этапе (хорошо знать ответ заранее или знать, что он существует), так и на заключительном этапе (хорошо проверить полученный результат с использованием ответа из другого источника или решения другого человека).

При решении большого количества задач можно заметить некоторые особенности решения задач при помощи программы MathCad. Попытаемся понять на нескольких примерах, как работает эта программа, проанализируем решения, полученные с её помощью и сравним эти решения с решениями, полученными другими способами.

Основные проблемы при использовании программы MathCad заключаются в следующем:

а) программа даёт ответ не в виде привычных элементарных функций, а виде специальных функций, известных далеко не всем;

б) в некоторых случаях «отказывается» давать ответ, хотя решение у задачи имеется;

в) иногда невозможно воспользоваться полученным результатом из-за его громоздкости;

г) решает задачу не полностью и не делает анализа решения.

Для того чтобы решить эти проблемы, необходимо использовать сильные и слабые стороны программы.

С её помощью легко и просто вычислять интегралы от дробно-рациональных функций. Поэтому рекомендуется использовать метод замены переменной, т.е. предварительно подготовить интеграл для решения. Для этих целей могут быть использованы подстановки, разобранные выше. Также следует иметь в виду, что полученные результаты необходимо исследовать на совпадение областей определения исходной функции и полученного результата. Кроме этого, некоторые полученные решения требуют дополнительного исследования.

Программа MathCad освобождает обучаемого или исследователя от рутинной работы, но не может освободить его от дополнительного анализа как при постановке задачи, так и при получении каких-либо результатов.

В данной работе были рассмотрены основные положения, связанные с изучением приложений определённого интеграла в курсе математики.

– был проведен анализ теоретической основы решения интегралов;

– материал был подвергнут систематизации и обобщению.

В процессе выполнения курсовой работы были рассмотрены примеры практических задач в области физики, геометрии, механики.


Заключение

Рассмотренные выше примеры практических задач, дают нам ясное представление значимости определенного интеграла для их разрешимости.

Трудно назвать научную область, в которой бы не применялись методы интегрального исчисления, в общем, и свойства определенного интеграла, в частности. Так в процессе выполнения курсовой работы нами были рассмотрены примеры практических задач в области физики, геометрии, механики, биологии и экономики. Конечно, это еще далеко не исчерпывающий список наук, которые используют интегральный метод для поиска устанавливаемой величины при решении конкретной задачи, и установлении теоретических фактов.

Также определенный интеграл используется для изучения собственно самой математики. Например, при решении дифференциальных уравнений, которые в свою очередь вносят свой незаменимый вклад в решение задач практического содержания. Можно сказать, что определенный интеграл – это некоторый фундамент для изучения математики. Отсюда и важность знания методов их решения.

Из всего выше сказанного понятно, почему знакомство с определенным интегралом происходит еще в рамках средней общеобразовательной школы, где ученики изучают не только понятие интеграла и его свойства, но и некоторые его приложения.


Литература

1. Волков Е.А. Численные методы. М., Наука, 1988.

2. Пискунов Н.С. Дифференциальное и интегральное исчисление. М., Интеграл-Пресс, 2004. Т. 1.

3. Шипачев В.С. Высшая математика. М., Высшая школа, 1990.

I. Объемы тел вращения. Предварительно изучите по учебнику Г. М. Фихтенгольца главу XII, п°п° 197, 198* Разберите подробно примеры, приведенные в п° 198.

508. Вычислить объем тела, образуемого вращением эллипсаВокруг оси Ох.

Таким образом,

530. Найти площадь поверхности, образованной вращением вокруг оси Ox дуги синусоиды у = sin х от точки X = 0 до точки X = It.

531. Вычислить площадь поверхности конуса с высотой h и радиусом г.

532. Вычислить площадь поверхности, образованной

вращением астроиды х3 -)- у* — а3 вокруг оси Ох.

533. Вычислить площадь поверхности, образованной цращением петли кривой 18 уг — х (6 — х)г вокруг оси Ох.

534. Найти поверхность тора, производимого вращением круга X2 - j - (у—З)2 = 4 вокруг оси Ох.

535. Вычислить площадь поверхности, образованной вращением окружности X = a cost, y = asint вокруг оси Ох.

536. Вычислить площадь поверхности, образованной вращением петли кривой х = 9t2, у = St — 9t3 вокруг оси Ох.

537. Найти площадь поверхности, образованной вращением дуги кривой х = е*sint, у = el cost вокруг оси Ox

от t = 0 до t = —.

538. Показать, что поверхность, производимая вращением дуги циклоиды х = a (q> —sin ф), у = а (I — cos ф) вокруг оси Oy, равна 16 и2 о2.

539. Найти поверхность, полученную вращением кардиоидыВокруг полярной оси.

540. Найти площадь поверхности, образованной вращением лемнискатыВокруг полярной оси.

Дополнительные задачи к главе IV

Площади плоских фигур

541. Найтивсю площадь области, ограниченной кривойИ осью Ох.

542. Найти площадь области, ограниченной кривой

И осью Ох.

543. Найти часть площади области, расположенной в первом квадранте и ограниченной кривой

л осями координат.

544. Найти площадь области, содержащейся внутри

петли:

545. Найти площадь области, ограниченной одной петлей кривой:

546. Найти площадь области, содержащейся внутри петли:

547. Найти площадь области, ограниченной кривой

И осью Ох.

548. Найти площадь области, ограниченной кривой

И осью Ох.

549. Найти площадь области, ограниченной осью Oxr

прямойИ кривой

Поверхность вращения - поверхность, образуемая при вращении вокруг прямой (оси поверхности) произвольной линии (прямой, плоской или пространственной кривой). Например, если прямая пересекает ось вращения, то при её вращении получится коническая поверхность, если параллельна оси - цилиндрическая, если скрещивается с осью - однополостныйгиперболоид вращения. Одна и та же поверхность может быть получена вращением самых разнообразных кривых. Площадь поверхности вращения, образованной вращением плоской кривой конечной длины вокруг оси, лежащей в плоскости кривой, но не пересекающей кривую, равна произведению длины кривой на длину окружности с радиусом, равным расстоянию от оси до центра масс кривой. Это утверждение называется второй теоремой Гюльдена, или теоремой Паппа о центроиде.

Площадь поверхности вращения, образованной вращением кривой вокруг оси можно вычислить по формуле

Для случая, когда кривая задана в полярной системе координат действительна формула

Механические приложения определённого интеграла (работа сил, статические моменты, центр тяжести).

Вычисление работы сил

Материальная точка движется по непрерывно дифференцируемой кривой, при этом на нее действует сила, направленная по касательной к траектории в направлении движения. Полная работа, совершаeмая силой F(s):

Если положение точки на траектории движения описывается другим параметром, то формула приобретает вид:

Вычисление статических моментов и центра тяжести
Пусть на координатной плоскости Оху некоторая масса М распределена с плотностью р = р(у) на некотором множестве точек S (это может быть дуга кривой или ограниченная плоская фигура). Обозначим s(у) - меру указанного множества (длина дуги или площадь).

Определение 2. Число называется k-м моментом массы М относительно оси Ох.
При k = 0 М 0 = М - масса,
k = 1 М 1 - статический момент,
k = 2 М 2 - момент инерции.

Аналогично вводятся моменты относительно оси Оу. В пространстве подобным же образом вводятся понятия моментов массы относительно координатных плоскостей.
Если р = 1, то соoтветствующие моменты называются геометрическими. Координаты центра тяжести однородной (р - const) плоской фигуры определяются по формулам:

где М 1 y , М 1 x - геометрические статические моменты фигуры относительно осей Оу и Ox; S - площадь фигуры.

Последние материалы раздела:

Чудеса Космоса: интересные факты о планетах Солнечной системы
Чудеса Космоса: интересные факты о планетах Солнечной системы

ПЛАНЕТЫ В древние времена люди знали только пять планет: Меркурий, Венера, Марс, Юпитер и Сатурн, только их можно увидеть невооруженным глазом....

Реферат: Школьный тур олимпиады по литературе Задания
Реферат: Школьный тур олимпиады по литературе Задания

Посвящается Я. П. Полонскому У широкой степной дороги, называемой большим шляхом, ночевала отара овец. Стерегли ее два пастуха. Один, старик лет...

Самые длинные романы в истории литературы Самое длинное литературное произведение в мире
Самые длинные романы в истории литературы Самое длинное литературное произведение в мире

Книга длинной в 1856 метровЗадаваясь вопросом, какая книга самая длинная, мы подразумеваем в первую очередь длину слова, а не физическую длину....