Площадь фигуры вращения вокруг ох. Площадь поверхности вращения при параметрически заданной линии

Приветствую вас, уважаемые студенты вуза Аргемоны!

Сегодня мы продолжим учиться материализации предметов. В прошлый раз мы вращали плоские фигуры и получали объёмные тела. Некоторые из них - очень даже заманчивые и полезные. Думаю, что многому, что изобретает маг, можно в дальнейшем найти применение.

Сегодня мы будет вращать кривые. Понятно, что таким образом мы можем получить какой-то предмет с очень тонкими гранями (колбочка или флакон для зелий, ваза для цветов, стакан для напитков и т.п.), потому как вращающаяся кривая именно такого рода предметы и может сотворить. Другими словами, вращением кривой мы можем получить какую-то поверхность - замкнутую со всех сторон или нет. Почему прямо сейчас вспомнилась дырявая чаша, из которой всё время пил сэр Шурф Лонли-Локли.

Вот мы и сотворим дырявую чашу и недырявую, и подсчитаем площадь сотворённой поверхности. Думаю, для чего-то она (вообще площадь поверхности) ведь будет нужна - ну хотя бы для нанесения специальной магической краски. А с другой стороны, площади магических артефактов могут потребоваться для расчёта приложенных к ним магических сил или ещё чего-то. Мы научимся это находить, а уж где применить - найдём.

Итак, форму чаши вполне нам может дать кусок параболы. Возьмём самую простейшую y=x 2 на промежутке . Видно, что при вращении её вокруг оси OY получается как раз чаша. Без дна.

Заклинание для расчёта площади поверхности вращения выглядит следующим образом:

Здесь |y| - это расстояние от оси вращения до любой точки кривой, которая вращается. Как известно, расстояние - это перпендикуляр.
Немного труднее со вторым элементом заклинания: ds - это дифференциал дуги. Эти слова нам ничего не дают, поэтому не будем заморачиваться, а перейдём на язык формул, где этот дифференциал явно представлен для всех известных нам случаев:
- декартовой системы координат;
- записи кривой в параметрическом виде;
- полярной системы координат.

Для нашего случая расстояние от оси вращения до любой точки на кривой равно х. Считаем площадь поверхности получившейся дырявой чаши:

Чтобы сделать чашу с дном, нужно взять ещё кусочек, но другой кривой: на интервале это линия y=1.

Ясно, что при её вращении вокруг оси OY получится донышко чаши в виде круга единичного радиуса. И мы знаем, как считается площадь круга (по формуле пи*r^2. Для нашего случая площадь круга будет равна пи), но вычислим его по новой формуле - для проверки.
Расстояние от оси вращения до любой точки этого кусочка кривой также равно х.

Ну вот, расчёты наши верны, что радует.

А теперь домашнее задание .

1. Найти площадь поверхности, полученной вращением ломаной ABC, где A=(1; 5), B=(1; 2), C=(6; 2), вокруг оси ОХ.
Совет. Записать все отрезки в параметрическом виде.
AB: x=1, y=t, 2≤t≤5
BC: x=t, y=2, 1≤t≤6
Кстати, на что похож получившийся предмет?

2. Ну а теперь придумайте что-то сами. Трёх предметов, думаю, хватит.

Данная формула называется формулой объема тела по площади параллельных сечений.

Пример. Найти объем эллипсоида x 2 + y 2 + z 2 = 1 . a 2b 2c 2

Рассекая эллипсоид плоскостью, параллельной плоскости Oyz и на расстояниих от нее (-а ≤х ≤а ), получим эллипс (см. рис. 15):

Площадь этого эллипса равна

S(x) = π bc1

Поэтому, по формуле (16), имеем

Вычисление площади поверхности вращения

Пусть кривая АВ является графиком функцииу = f (x ) ≥ 0, гдех [а ,b ], a функцияу = f (x ) и её производнаяу" = f" (x ) непрерывны на этом отрезке.

Тогда площадь S поверхности, образованной вращением кривойАВ вокруг осиОх вычисляется по формуле

2 π

1 +(y ′) 2 dx .

Если кривая АВ задана параметрическими уравнениямих = x (t ),у = у (t ),t 1 ≤t ≤t 2 , то формула для площади поверхности вращения принимает вид

S x = 2 π ∫ y (t )(x ′ (t ))2 + (y ′ (t ))2 dt .

Пример Найти площадь поверхности шара радиуса R. Решение:

Можно считать, что поверхность шара образована вращением полуокружности y = R 2 − x 2 ,- R ≤х ≤R , вокруг осиОх. По формуле (19) находим

− x

S = 2 π

R 2− x 21 +

dx =

− x

− R

2 π ∫ R2 − x2 + x2 dx= 2 π Rx− R R = 4 π R2 .

−R

Пример . Дана циклоида x = a (t − sin t ) , 0 ≤ t ≤ 2 π . y = a (1− cost ) ,

Найти площадь поверхности, образованной вращением её вокруг оси Ох. Решение:

При вращении половины дуги циклоиды вокруг оси Ох площадь поверхности вращения равна

1 S x

2π π ∫ a (1− cost )

(a(1 − cos t)) 2 + (asin t) 2 dt=

2π ∫ π a 2

2 sin2 t

2 cost + cos2

t + sin 2 tdt=

4 π a 2

π ∫ sin2

2 2sin2 t dt = 8π a 2

π ∫ sin2 t

sin t

dt =

= −8 π a 2 ∫

− cos

d cos

= − 16 π a

32π a

= −16 π a

0 −

1− 0+

= −16 π a

1 S x = 32 π a 2 . Следовательно,

64 π a 2 .

Вычисление длины дуги плоской кривой

Прямоугольные координаты

Пусть в дугу, когда число звеньев ломаной неограниченно возрастает, а длина наибольшего прямоугольных координатах дана плоская кривая АВ, уравнение которой у = f(x), где, а ≤ х≤ b.

Под длиной дуги АВ понимается предел, к которому стремится длина ломаной линии, вписанной в эту звена ее стремится к нулю. Покажем, что если функция у = f(x) и ее производная y′ = f′ (x) непрерывны на отрезке [а ,b ], то криваяАВ имеет длину, равную

Если уравнение кривой АВ задано в параметрической форме

x = x(t) , α ≤ t ≤ β , y= y(t) ,

где x (t ) иy (t ) – непрерывные функции с непрерывными производными иx (α ) =а, x (β ) =b , то длинаl кривойАВ находится по формуле

(x ′ (t ))2 + (y ′ (t ))2 dt . = R arcsin

π .

− x

Значит, l = 2π R. Если уравнение окружности записать в параметрическом видех = R cost, у = R sint (0 ≤t ≤ 2π ), то

(− Rsin t) 2 + (Rcos t) 2 dt= Rt0 2 π = 2 π R.

l = ∫

Полярные координаты

Пусть кривая АВ задана уравнением в полярных координатахr =r (ϕ ),α ≤ ϕ ≤ β . Предположим, чтоr (ϕ ) иr" (ϕ ) непрерывны на отрезке [α ,β ].

Если в равенствах х = r cosϕ ,у =r sinϕ , связывающих полярные и декартовы координаты,

параметром считать угол ϕ , то кривуюАВ можно задать параметрическиx = r (ϕ ) cos ϕ ,

y = r (ϕ ) sinϕ .

Применяя формулу (15), получаем l = ∫ r 2 + r ′ 2 d ϕ .

Пример Найти длину кардиоиды r =a (1 + cosϕ ). Решение:

Кардиоида r =a (1 + cosϕ ) имеет вид, изображенный на рисунке 14. Она симметрична относительно полярной оси. Найдем половину длины кардиоиды:

1 l =

π∫

(a (1 + cos ϕ ))2 + (a (− sin ϕ ))2 d ϕ =

A π ∫

2 + 2cosϕ d ϕ =a π ∫

2 2cos2 ϕ d ϕ =

2a π ∫ cosϕ d ϕ = 4a sinϕ

Таким образом, 1 2 l = 4 a . Значит,l = 8а.

Поверхность вращения - поверхность, образуемая при вращении вокруг прямой (оси поверхности) произвольной линии (прямой, плоской или пространственной кривой). Например, если прямая пересекает ось вращения, то при её вращении получится коническая поверхность, если параллельна оси - цилиндрическая, если скрещивается с осью - однополостныйгиперболоид вращения. Одна и та же поверхность может быть получена вращением самых разнообразных кривых. Площадь поверхности вращения, образованной вращением плоской кривой конечной длины вокруг оси, лежащей в плоскости кривой, но не пересекающей кривую, равна произведению длины кривой на длину окружности с радиусом, равным расстоянию от оси до центра масс кривой. Это утверждение называется второй теоремой Гюльдена, или теоремой Паппа о центроиде.

Площадь поверхности вращения, образованной вращением кривой вокруг оси можно вычислить по формуле

Для случая, когда кривая задана в полярной системе координат действительна формула

Механические приложения определённого интеграла (работа сил, статические моменты, центр тяжести).

Вычисление работы сил

Материальная точка движется по непрерывно дифференцируемой кривой, при этом на нее действует сила, направленная по касательной к траектории в направлении движения. Полная работа, совершаeмая силой F(s):

Если положение точки на траектории движения описывается другим параметром, то формула приобретает вид:

Вычисление статических моментов и центра тяжести
Пусть на координатной плоскости Оху некоторая масса М распределена с плотностью р = р(у) на некотором множестве точек S (это может быть дуга кривой или ограниченная плоская фигура). Обозначим s(у) - меру указанного множества (длина дуги или площадь).

Определение 2. Число называется k-м моментом массы М относительно оси Ох.
При k = 0 М 0 = М - масса,
k = 1 М 1 - статический момент,
k = 2 М 2 - момент инерции.

Аналогично вводятся моменты относительно оси Оу. В пространстве подобным же образом вводятся понятия моментов массы относительно координатных плоскостей.
Если р = 1, то соoтветствующие моменты называются геометрическими. Координаты центра тяжести однородной (р - const) плоской фигуры определяются по формулам:

где М 1 y , М 1 x - геометрические статические моменты фигуры относительно осей Оу и Ox; S - площадь фигуры.

I. Объемы тел вращения. Предварительно изучите по учебнику Г. М. Фихтенгольца главу XII, п°п° 197, 198* Разберите подробно примеры, приведенные в п° 198.

508. Вычислить объем тела, образуемого вращением эллипсаВокруг оси Ох.

Таким образом,

530. Найти площадь поверхности, образованной вращением вокруг оси Ox дуги синусоиды у = sin х от точки X = 0 до точки X = It.

531. Вычислить площадь поверхности конуса с высотой h и радиусом г.

532. Вычислить площадь поверхности, образованной

вращением астроиды х3 -)- у* — а3 вокруг оси Ох.

533. Вычислить площадь поверхности, образованной цращением петли кривой 18 уг — х (6 — х)г вокруг оси Ох.

534. Найти поверхность тора, производимого вращением круга X2 - j - (у—З)2 = 4 вокруг оси Ох.

535. Вычислить площадь поверхности, образованной вращением окружности X = a cost, y = asint вокруг оси Ох.

536. Вычислить площадь поверхности, образованной вращением петли кривой х = 9t2, у = St — 9t3 вокруг оси Ох.

537. Найти площадь поверхности, образованной вращением дуги кривой х = е*sint, у = el cost вокруг оси Ox

от t = 0 до t = —.

538. Показать, что поверхность, производимая вращением дуги циклоиды х = a (q> —sin ф), у = а (I — cos ф) вокруг оси Oy, равна 16 и2 о2.

539. Найти поверхность, полученную вращением кардиоидыВокруг полярной оси.

540. Найти площадь поверхности, образованной вращением лемнискатыВокруг полярной оси.

Дополнительные задачи к главе IV

Площади плоских фигур

541. Найтивсю площадь области, ограниченной кривойИ осью Ох.

542. Найти площадь области, ограниченной кривой

И осью Ох.

543. Найти часть площади области, расположенной в первом квадранте и ограниченной кривой

л осями координат.

544. Найти площадь области, содержащейся внутри

петли:

545. Найти площадь области, ограниченной одной петлей кривой:

546. Найти площадь области, содержащейся внутри петли:

547. Найти площадь области, ограниченной кривой

И осью Ох.

548. Найти площадь области, ограниченной кривой

И осью Ох.

549. Найти площадь области, ограниченной осью Oxr

прямойИ кривой

Последние материалы раздела:

Чудеса Космоса: интересные факты о планетах Солнечной системы
Чудеса Космоса: интересные факты о планетах Солнечной системы

ПЛАНЕТЫ В древние времена люди знали только пять планет: Меркурий, Венера, Марс, Юпитер и Сатурн, только их можно увидеть невооруженным глазом....

Реферат: Школьный тур олимпиады по литературе Задания
Реферат: Школьный тур олимпиады по литературе Задания

Посвящается Я. П. Полонскому У широкой степной дороги, называемой большим шляхом, ночевала отара овец. Стерегли ее два пастуха. Один, старик лет...

Самые длинные романы в истории литературы Самое длинное литературное произведение в мире
Самые длинные романы в истории литературы Самое длинное литературное произведение в мире

Книга длинной в 1856 метровЗадаваясь вопросом, какая книга самая длинная, мы подразумеваем в первую очередь длину слова, а не физическую длину....