Парадокс двух близнецов. Эффект близнецов

Специальные и общие теории относительности говорят о том, что у каждого наблюдателя свое время. То есть, грубо говоря, один человек движется и по своим часам определяет одно время, другой человек как-то движется и по своим часам определяет другое время. Безусловно, если эти люди движутся относительно друг друга с небольшими скоростями и ускорениями, они измеряют практически одно и то же время. По нашим часам, которые мы используем, мы это отличие измерить неспособны. Я не исключаю, что если часами, которые измеряют время с точностью до одной секунды за время жизни Вселенной, будут оснащены два человека, то, походив как-то по-разному, они, возможно, увидят какую-то разницу в каком-то n знаке. Однако эти различия слабые.

Специальные и общие теории относительности предсказывают, что эти различия будут существенными, если два товарища друг относительно друга движутся с большими скоростями, ускорениями или вблизи черной дыры. Например, один из них далеко от черной дыры, а другой близко к черной дыре или какому-нибудь сильно гравитирующему телу. Или один покоится, а другой движется с какой-то скоростью относительно него или с большим ускорением. Тогда различия будут существенные. Насколько большие, я не говорю, и это измеряется на эксперименте с высокоточными атомными часами. Люди летают на самолете, потом привозят, сравнивают, что показали часы на земле, что показали часы на самолете и не только. Таких экспериментов множество, все они согласуются с форменными предсказаниями общей и специальной теории относительности. В частности, если один наблюдатель покоится, а другой относительно него движется с постоянной скоростью, то пересчет хода часов от одного к другому задается преобразованиями Лоренца, как пример.

В специальной теории относительности на основе этого есть так называемый парадокс близнецов, который описан во многих книгах. Заключается он в следующем. Вот представьте себе, что у вас есть два близнеца: Ваня и Вася. Скажем, Ваня остался на Земле, а Вася полетел на альфу Центавра и вернулся. Теперь говорится, что относительно Вани Вася двигался с постоянной скоростью. У него время двигалось медленнее. Он вернулся, соответственно, он должен быть моложе. С другой стороны, парадокс формулируется так: теперь, наоборот, относительно Васи (движение с постоянной скоростью относительно) Ваня движется с постоянной скоростью, несмотря на то что он находился на Земле, то есть, когда Вася вернется на Землю, по идее, у Вани часы должны показывать меньше времени. Кто же из них младше? Какое-то логическое противоречие. Совершенная чушь эта специальная теория относительности, получается.

Факт номер раз: сразу нужно понять, что преобразованиями Лоренца можно пользоваться, если переходить из одной инерциальной системы отсчета в другую инерциальную систему отсчета. И эта логика, что у одного время движется медленнее за счет того, что он движется с постоянной скоростью, только на основе преобразования Лоренца. А у нас в данном случае один из наблюдателей почти инерциальный - тот, который находится на Земле. Почти инерциальный, то есть эти ускорения, с которыми Земля движется вокруг Солнца, Солнце движется вокруг центра Галактики и так далее, - это все маленькие ускорения, для данной задачи заведомо можно этим пренебречь. А второй должен слетать на альфу Центавра. Он должен разогнаться, затормозиться, потом опять разогнаться, затормозиться - это все неинерциальные движения. Поэтому такой наивный пересчет сразу не работает.

Как же правильно объяснить этот парадокс близнецов? Он на самом деле достаточно просто объясняется. Для того чтобы сравнивать время жизни двух товарищей, они должны встречаться. Они должны сначала встретиться в первый раз, оказаться в одной точке пространства в одно и то же время, сравнить часы: 0 часов 0 минут 1 января 2001 года. Потом разлететься. Один из них будет двигаться одним образом, у него как-то часы будут тикать. Другой будет двигаться другим образом, и у него как-то своим образом будут тикать часы. Потом они снова встретятся, вернутся в одну и ту же точку в пространстве, но уже в другое время по отношению к первоначальному. В одно и то же время окажутся в одной и той же точке по отношению к каким-нибудь дополнительным часам. Важно следующее: теперь они могут сравнить часы. У одного натикало столько-то, у другого натикало столько-то. Как это объясняется?

Представьте эти две точки в пространстве и времени, где они встречались в начальный момент и в конечный момент, в момент отлета на альфу Центавра, в момент прилета с альфы Центавра. Один из них двигался инерциально, будем считать для идеала, то есть он двигался по прямой. Второй из них двигался неинерциально, поэтому он в этом пространстве и времени двигался по какой-то кривой - ускорялся, замедлялся и так далее. Так вот одна из этих кривых обладает свойством экстремальности. Ясно, что среди всех возможных кривых в пространстве и времени прямая является экстремальной, то есть она имеет экстремальную длину. Наивно, кажется, что она должна иметь наименьшую длину, потому что на плоскости среди всех кривых наименьшую длину между двумя точками имеет прямая. В пространстве и времени Минковского у него так устроена метрика, так устроен способ измерения длин, прямая имеет наидлиннейшую длину, как это ни странно звучит. Прямая имеет самую большую длину. Поэтому тот, который двигался инерциально, оставался на Земле, измерит больший промежуток времени, чем тот, который летал на альфу Центавра и вернулся, поэтому он будет старше.

Обычно такие парадоксы придумываются для того, чтобы опровергнуть ту или иную теорию. Придумываются самими же учеными, которые занимаются этой областью науки.

Исходно, когда появляется новая теория, ясное дело, что ее вообще никто не воспринимает, особенно если она противоречит каким-то устоявшимся на тот момент данным. И люди просто сопротивляются, это безусловно, придумывают всякие контраргументы и так далее. Это все проходит тяжелейший процесс. Человек борется за то, чтобы его признали. Это всегда связано с долгими промежутками времени и большой нервотрепкой. Возникают вот такие парадоксы.

Кроме парадокса близнецов есть, например, такой парадокс со стержнем и сараем, так называемое Лоренцево сокращение длин, что если вы стоите и смотрите на стержень, который мимо вас летит с очень высокой скоростью, то он выглядит короче, чем он на самом деле есть в той системе отсчета, в которой он покоится. С этим связан вот такой парадокс. Представьте себе ангар или сквозной сарай, у него две дырки, он какой-то длины, неважно какой. Представьте себе, что на него летит этот стержень, собирается пролететь сквозь него. Сарай в своей системе покоя имеет одну длину, скажем 6 метров. Стержень в своей системе покоя имеет длину 10 метров. Представьте себе, что у них скорость сближения такая, что в системе отсчета сарая стержень сократился до 6 метров. Можно посчитать, какая это скорость, но сейчас неважно, она достаточно близка к скорости света. Стержень сократился до 6 метров. Это значит, что в системе отсчета сарая стрежень в какой-то момент целиком поместится в сарай.

Человек, который стоит в сарае, - вот мимо него летит стержень - в какой-то момент увидит этот стержень, целиком лежащий в сарае. С другой стороны, движение с постоянной скоростью относительное. Соответственно, можно рассматривать, как будто бы стержень покоится, а на него летит сарай. Значит, в системе отсчета стержня сарай сократился, причем сократился он в то же число раз, что и стрежень в системе отсчета сарая. Значит, в системе отсчета стержня сарай сократился до 3,6 метра. Теперь в системе отсчета стержня стержень никак не может поместиться в сарай. В одной системе отсчета он помещается, в другой системе отсчета он не помещается. Чушь какая-то.

Ясное дело, что такая теория не может быть верной, - кажется на первый взгляд. Однако объяснение простое. Когда вы видите стержень и говорите: «Он данной длины», это значит, что к вам поступает сигнал от этого и от этого конца стержня одновременно. То есть, когда я говорю, что стержень поместился в сарай, двигаясь с какой-то скоростью, это значит, что событие совпадения этого конца стержня с этим концом сарая одновременно с событием совпадения этого конца стержня с этим концом сарая. Эти два события одновременны в системе отсчета сарая. Но вы же слышали, наверное, что в теории относительности одновременность относительна. Так вот оказывается, что в системе отсчета стержня эти два события неодновременны. Просто сначала совпадает правый конец стержня с правым концом сарая, потом совпадает левый конец стержня с левым концом сарая через какой-то промежуток времени. Этот промежуток времени как раз равен тому времени, за которое эти 10 метров минус 3,6 метра с этой данной скоростью пролетят конец стержня.

Чаще всего теорию относительности опровергают по той причине, что для нее очень легко придумываются подобные парадоксы. Этих парадоксов существует масса. Есть такая книжка Тейлора и Уилера «Физика пространства-времени», она написана достаточно доступным языком для школьников, где подавляющее большинство этих парадоксов разбираются и объясняются с использованием достаточно простых аргументов и формул, как объясняется тот или иной парадокс в рамках теории относительности.

Можно придумать какой-нибудь способ объяснения каждого данного факта, который выглядит проще, чем тот способ, который предоставляет теория относительности. Однако важным свойством специальной теории относительности является то, что она объясняет не каждый отдельный факт, а всю эту совокупность фактов, вместе взятых. Вот если вы придумали объяснение какого-то одного факта, выделенного из всей этой совокупности, пусть оно объясняет этот факт лучше, чем специальная теория относительности, на ваш взгляд, однако еще нужно проверить, что он и все остальные факты тоже объясняет. А как правило, все эти объяснения, которые звучат более просто, не объясняют всего остального. И надо помнить, что в тот момент, когда придумывается та или иная теория, - это действительно какой-то психологический, научный подвиг. Потому что фактов на этот момент существует один, два или три. И вот человек, основываясь на этом одном или трех наблюдениях, формулирует свою теорию.

В тот момент кажется, что она противоречит всему, что было до того известно, если теория кардинальная. Придумываются вот такие парадоксы, чтобы ее опровергнуть, и так далее. Но, как правило, эти парадоксы объясняются, появляются какие-то новые дополнительные экспериментальные данные, они проверяются, соответствуют ли они этой теории. Также из теории следуют какие-то предсказания. Она же основывается на каких-то фактах, что-то там утверждает, из этого утверждения можно что-то вывести, получить и потом сказать, что если эта теория верна, то должно быть так-то и так-то. Идем, проверяем, так это или не так. Так-то. Значит, теория хороша. И так до бесконечности. В общем-то требуется бесконечно много экспериментов, чтобы подтвердить теорию, но на данный момент в той области, в которой специальная и общая теория относительности применимы, фактов, опровергающих эти теории, не существует.

Мнимые парадоксы СТО. Парадокс близнецов

Путенихин П.В.
[email protected]

В литературе и в интернете до сих пор идут многочисленные дискуссии по этому парадоксу. Предложено и продолжает предлагаться множество его решений (объяснений), из которых делаются выводы как о непогрешимости СТО, так и её ложности. Впервые тезис, послуживший основой для формулировки парадокса, был изложен Эйнштейном в его основополагающей работе по специальной (частной) теор ии относительности «К электродинамике движущихся тел» в 1905 году:

«Если в точке А находятся двое синхронно идущих часов и мы перемещаем одни из них по замкнутой кривой с постоянной скоростью до тех пор, пока они не вернутся в А (...), то эти часы по прибытии в А будут отставать по сравнению с часами, остававшимися неподвижными...».

В дальнейшем этот тезис получил собственные имена «парадокс часов», «парадокс Ланжевена» и «парадокс близнецов». Последнее название прижилось, и в настоящее время чаще встречается формулировка не с часами, а с близнецами и космическими полётами: если один из близнецов улетает на космическом корабле к звёздам, то по возвращению он оказывается моложе своего остававшегося на Земле брата.

Гораздо реже обсуждается другой, сформулированный Эйнштейном в этой же работе и следующий сразу же за первым, тезис об отставании часов на экваторе от часов, находящихся на полюсе Земли. Смыслы обоих тезисов совпадают:

«… часы с балансиром, находящиеся на земном экваторе, должны идти несколько медленнее, чем точно такие же часы, помещённые на полюсе, но в остальном поставленные в одинаковые условия».

На первый взгляд это утверждение может показаться странным, ведь расстояние между часами неизменно и нет относительной скорости между ними. Но на самом деле на изменение темпа хода часов влияет мгновенная скорость, которая, хотя и меняет непрерывно своё направление (тангенциальная скорость экватора), но все в сумме они дают ожидаемое отставание часов.

Парадокс, кажущееся противоречие в предсказаниях теор ии относительности возникает, если движущимся близнецом считать того, который оставался на Земле. В этом случае теперь уже улетавший в космос близнец должен ожидать, что остававшийся на Земле брат окажется моложе него. Так же и с часами: с точки зрения часов на экваторе движущимися следует считать часы на полюсе. Таким образом, и возникает противоречие: так кто же из близнецов окажется моложе? Какие из часов покажут время с отставанием?

Чаще всего парадоксу обычно даётся простое объяснение: две рассматриваемые системы отсчета на самом деле не являются равноправными. Близнец, который улетал в космос, в своём полёте не всегда находился в инерциальной системе отсчета, в эти моменты он не может использовать уравнения Лоренца. Так же и с часами.

Отсюда следует сделать вывод: в СТО не может быть корректно сформулирован «парадокс часов», специальная теор ия не делает двух взаимоисключающих предсказаний. Полное решение задача получила после создания общей теор ии относительности, которая решила задачу точно и показала, что, действительно, в описанных случаях отстают движущиеся часы: часы улетавшего близнеца и часы на экваторе . «Парадокс близнецов» и часов, таким образом, является рядовой задачей теор ии относительности.

Задача об отставании часов на экваторе

Мы опираемся на определение понятия «парадокс» в логике как противоречия, полученного в результате логически формально правильного рассуждения, приводящего к взаимно противоречащим заключениям (Энциплопедический словарь), или как два противоположных утверждения, для каждого из которых имеются убедительные аргументы (Логический словарь). С этой позиции, «парадокс близнецов, часов, Ланжевена» парадоксом не является, поскольку нет двух взаимоисключающих предсказаний теор ии.

Сначала покажем, что тезис в работе Эйнштейна о часах на экваторе полностью совпадает с тезисом об отставании движущихся часов. На рисунке показаны условно (вид сверху) часы на полюсе Т1 и часы на экваторе Т2. Мы видим, что расстояние между часами неизменно, то есть, между ними, казалось бы, нет необходимой относительной скорости, которую можно подставить в уравнения Лоренца. Однако, добавим третьи часы Т3. Они находятся в ИСО полюса, как и часы Т1, и идут, следовательно, синхронно с ними. Но теперь мы видим, что часы Т2 явно имеют относительную скорость по отношению к часам Т3: сначала часы Т2 находятся на близком расстоянии от часов Т3, затем они удаляются и вновь приближаются. Следовательно, с точки зрения неподвижных часов Т3 движущиеся часы Т2 отстают:

Рис.1 Движущиеся по окружности часы отстают от часов, находящихся в центре окружности. Это становится более очевидно, если добавить неподвижные часы вблизи от траектории движущихся.

Следовательно, часы Т2 отстают также и от часов Т1. Переместим теперь часы Т3 настолько близко к траектории Т2, что в какой-то начальный момент времени они окажутся рядом. В этом случае мы получаем классический вариант парадокса близнецов. На следующем рисунке мы видим, что сначала часы Т2 и Т3 были в одной точке, затем часы на экваторе Т2 стали удаляться от часов Т3 и по замкнутой кривой через некоторое время вернулись в исходную точку:

Рис.2. Движущиеся по окружности часы Т2 сначала находятся рядом с неподвижными часами Т3, затем удаляются и через некоторое время вновь сближаются с ними.

Это полностью соответствует формулировке первого тезиса об отставании часов, послужившего основой «парадокса близнецов». Но часы Т1 и Т3 идут синхронно, следовательно, часы Т2 отстали также и от часов Т1. Таким образом, оба тезиса из работы Эйнштейна в равной степени могут служить основой для формулировки «парадокса близнецов».

Величина отставания часов в этом случае определяется уравнением Лоренца, в которое мы должны подставить тангенциальную скорость движущихся часов. Действительно, в каждой точке траектории часы Т2 имеют скорости, равные по модулю, но разные по направлениям:

Рис.3 Движущиеся часы имеют постоянно изменяющееся направление скорости.

Как эти разные скорости внести в уравнение? Очень просто. Давайте, в каждую точку траектории часов Т2 поместим свои собственные неподвижные часы. Все эти новые часы идут синхронно с часами Т1 и Т3, поскольку все они находятся в одной и той же неподвижной ИСО. Часы Т2, проходя каждый раз мимо соответствующих часов, испытывает отставание, вызванное относительной скоростью именно мимо этих часов. За мгновенный интервал времени по этим часам, часы Т2 также отстанут на мгновенно малое время, которое можно вычислить по уравнению Лоренца. Здесь и далее мы будем использовать одни и те же обозначения для часов и их показаний:

Очевидно, что верхним пределом интегрирования являются показания часов Т3 в момент, когда часы Т2 и Т3 вновь встретятся. Как видим, показания часов Т2 < T3 = T1 = T. Лоренцев множитель мы выносим из-под знака интеграла, поскольку он является константой для всех часов. Введённое множество часов можно рассматривать как одни часы - «распределённые в пространстве часы». Это «пространство часов», в котором часы в каждой точке пространства идут синхронно и обязательно некоторые из них находятся рядом с движущимся объектом, с которым эти часы имеют строго определённое относительное (инерциальное) движение.

Как видим, получено решение, полностью совпадающее с решением первого тезиса (с точностью до величин четвертого и высших порядков). По этой причине, дальнейшие рассуждения можно рассматривать как относящиеся ко всем видам формулировок «парадокса близнецов».

Вариации на тему «парадокса близнецов»

Парадокс часов, как отмечено выше, означает, что специальная теор ия относительности, вроде бы, делает два взаимно противоречащих друг другу предсказания. Действительно, как мы только - что вычислили, движущиеся по окружности часы отстают от часов, находящихся в центре окружности. Но и часы Т2, движущиеся по окружности, имеют все основания утверждать, что они находятся в центре окружности, вокруг которой движутся неподвижные часы Т1.

Уравнение траектории движущихся часов Т2 с точки зрения неподвижных Т1:

x, y - координаты движущихся часов Т2 в системе отсчета неподвижных;

R - радиус окружности, описываемой движущимися часами Т2.

Очевидно, что с точки зрения движущихся часов Т2, расстояние между ними и неподвижными часами Т1 также равно R в любой момент времени. Но известно, что геометрическим местом точек, равно удалённых от заданной, является окружность. Следовательно, и в системе отсчета движущихся часов Т2, неподвижные часы Т1 движутся вокруг них по окружности:

x 1 2 + y 1 2 = R 2

x 1 , y 1 - координаты неподвижных часов Т1 в системе отсчета движущихся;

R - радиус окружности, описываемой неподвижными часами Т1.

Рис.4 С точки зрения движущихся часов Т2 вокруг них по окружности движутся неподвижные часы Т1.

А это, в свою очередь, означает, что с точки зрения специальной теор ии относительности и в этом случае должно возникнуть отставание часов. Очевидно, что в этом случае, наоборот: Т2 > T3 = T. Получается, что и на самом деле специальная теор ия относительности делает два взаимоисключающих предсказания Т2 > T3 и Т2 < T3? И это действительно так, если не принять во внимание, что теор ия была создана для инерциальных систем отсчета. Здесь же движущиеся часы Т2 не находятся в инерциальной системе. Само по себе это не запрет, а лишь указание на необходимость учесть это обстоятельство. И это обстоятельство разъясняет общая теор ия относительности . Применять его или нет, можно определить простым опытом. В инерциальной системе отсчета на тела не действуют никакие внешние силы. В неинерциальной системе и согласно принципу эквивалентности общей теор ии относительности на все тела действует сила инерции или тяготения. Следовательно, маятник в ней отклонится, все незакреплённые тела будут стремиться переместиться в одном направлении.

Такой опыт рядом с неподвижными часами Т1 даст отрицательный результат, будет наблюдаться невесомость. А вот рядом с движущимися по окружности часами Т2 на все тела будет действовать сила, стремящаяся отбросить их от неподвижных часов. Мы, разумеется, считаем, что никаких иных гравитирующих тел поблизости нет. Кроме того, движущиеся по окружности часы Т2 сами по себе не вращаются, то есть, движутся не так, как Луна вокруг Земли, обращённая к ней всегда одной и той же стороной. Наблюдатели рядом с часами Т1 и Т2 в своих системах отсчета будут видеть удалённый от них на бесконечность объект всегда под одним и тем же углом.

Таким образом, движущийся с часами Т2 наблюдатель должен учесть факт неинерциальности своей системы отсчета в соответствии с положениями общей теор ии относительности. Эти положения говорят, что часы в поле гравитации или в эквивалентном ему поле инерции, замедляют свой ход. Поэтому в отношении неподвижных (по условиям опыта) часов Т1 он должен признать, что эти часы находятся в гравитационном поле меньшей напряженности, поэтому они идут быстрее его собственных и к их ожидаемым показаниям следует добавить гравитационную поправку.

Напротив, наблюдатель рядом с неподвижными часами Т1 констатирует, что движущиеся часы Т2 находятся в поле инерционной гравитации, поэтому идут медленнее и от их ожидаемых показаний следует отнять гравитационную поправку.

Как видим, мнение обоих наблюдателей полностью совпали в том, что движущиеся в исходном смысл е часы Т2 отстанут. Следовательно, специальная теор ия относительности в «расширенной» трактовке делает два строго согласованных предсказания, что не даёт никаких оснований для провозглашения парадоксов. Это рядовая задача, имеющая вполне конкретное решение. Парадокс в СТО возникает лишь в том случае, если использовать её положения к объекту, не являющимся объектом специальной теор ии относительности. Но, как известно, неверная посылка может привести как к правильному, так и к ложному результату.

Эксперимент, подтверждающий СТО

Следует отметить, что все эти рассмотренные мнимые парадоксы соответствуют мысленным экспериментам на основе математической модели под названием Специальная Теория Относительности. То, что в этой модели данные эксперименты имеют полученные выше решения, не обязательно означает, что в реальном физическом эксперименты будут получены такие же результаты. Математическая модель теор ии прошла многолетнее испытание и в ней не найдено никаких противоречий. Это значит, что все логически корректные мысленные эксперименты неизбежно будут давать результат, подтверждающий её .

В этой связи представляет особый интерес эксперимент, который общепризнанно в реальных условиях показал точно такой же результат, что и рассмотренный мысленный эксперимент. Непосредственно это означает, что математическая модель теор ии верно отражает, описывает реальные физические процессы.

Это был первый эксперимент по проверке отставания движущихся часов, известный как эксперимент Хафеле - Китинга, проведённый в 1971 г . Четверо часов, сделанных на основе цезиевых стандартов частоты, были помещены на два самолета и совершили кругосветное путешествие. Одни часы путешествовали в восточном направлении, другие обогнули Землю в западном направлении. Разница в скорости хода времени возникала из-за добавочной скорости вращения Земли, при этом учитывалось и влияние поля тяготения на полетной высоте по сравнению с уровнем Земли. В результате эксперимента удалось подтвердить общую теор ию относительности, измерить различие в скорости хода часов на борту двух самолетов. Полученные результаты были опубликованы в журнале Science в 1972 году.

Литература

1. Путенихин П.В., Три ошибки анти-СТО [прежде, чем критиковать теор ию, её следует хорошо изучить; невозможно опровергнуть безупречную математику теор ии её же математическими средствами, кроме как незаметно отказавшись от её постул атов - но это уже другая теор ия; не используются известные экспериментальные противоречия в СТО - опыты Маринова и других - их нужно многократно повторить], 2011, URL:
http://samlib.ru/p/putenihin_p_w/antisto.shtml (дата обращения 12.10.2015)

2. Путенихин П.В., Итак, парадокса (близнецов) больше нет! [анимированные диаграммы - решение парадокса близнецов средствами ОТО; решение имеет погрешность вследствие использования приближённого уравнения потенциал а; ось времени - горизонтальна, расстояний - вертикальна], 2014, URL:
http://samlib.ru/editors/p/putenihin_p_w/ddm4-oto.shtml (дата обращения 12.10.2015)

3. Эксперимент Хафеле-Китинга, Викпиедия, [убедительное подтверждение эффекта СТО о замедлении хода движущихся часов], URL:
https://ru.wikipedia.org/wiki/Эксперимент_Хафеле_—_Китинга (дата обращения 12.10.2015)

4. Путенихин П.В. Мнимые парадоксы СТО. Парадокс близнецов, [парадокс является мнимым, кажущимся, поскольку его формулировка сделана с ошибочными предположениями; корректные предсказания специальной теор ии относительности не являются противоречивыми], 2015, URL:
http://samlib.ru/p/putenihin_p_w/paradox-twins.shtml (дата обращения 12.10.2015)

8. Парадокс близнецов

Какова была реакция всемирно известных ученых и философов на странный, новый мир относительности? Она была различной. Большинство физиков и астрономов, смущенные нарушением «здравого смысла» и математическими трудностями общей теории относительности, хранили благоразумное молчание. Но ученые и философы, способные понять теорию относительности, встретили ее с радостью. Мы уже упоминали, как быстро Эддингтон осознал важность достижений Эйнштейна. Морис Шлик, Бертран Рассел, Рудольф Кернэп, Эрнст Кассирер, Альфред Уайтхед, Ганс Рейхенбах и многие другие выдающиеся философы были первыми энтузиастами, которые писали об этой теории и старались выяснить все ее следствия. Книга Рассела «Азбука теории относительности» была впервые опубликована в 1925 г., но до сих пор она остается одним из лучших популярных изложений теории относительности.

Многие ученые оказались неспособными освободиться от старого, ньютоновского образа мыслей.

Они во многом напоминали ученых далеких дней Галилея, которые не могли заставить себя признать, что Аристотель мог ошибаться. Сам Майкельсон, знания математики которого были ограниченными, так и не признал теории относительности, хотя его великий эксперимент проложил путь специальной теории. Позже, в 1935 г., когда я был студентом Чикагского университета, курс астрономии читал нам профессор Вильям Макмиллан, широко известный ученый. Он открыто говорил, что теория относительности - это печальное недоразумение.

«Мы, современное поколение, слишком нетерпеливы, чтобы чего-нибудь дождаться », - писал Макмиллан в 1927 г. «За сорок лет, прошедших после попытки Майкельсона обнаружить ожидавшееся движение Земли относительно эфира, мы отказались от всего, чему нас учили раньше, создали постулат, самый бессмысленный из всех, который мы только смогли придумать, и создали неньютоновскую механику, согласующуюся с этим постулатом. Достигнутый успех - превосходная дань нашей умственной активности и нашему остроумию, но нет уверенности, что нашему здравому смыслу ».

Самые разнообразные возражения выдвигались против теории относительности. Одно из наиболее ранних и наиболее упорных возражений высказывалось относительно парадокса, впервые упомянутого самим Эйнштейном в 1905 г. в его статье о специальной теории относительности (слово «парадокс» употребляется для обозначения чего-то противоположного общепринятому, но логически непротиворечивого).

Этому парадоксу уделяется много внимания в современной научной литературе, поскольку развитие космических полетов наряду с конструированием фантастически точных приборов для измерения времени может вскоре дать способ проверки этого парадокса прямым способом.

Этот парадокс обычно излагается как мысленный опыт с участием близнецов. Они сверяют свои часы. Один из близнецов на космическом корабле совершает длительное путешествие в космосе. Когда он возвращается, близнецы сравнивают показания часов. Согласно специальной теории относительности часы путешественника покажут несколько меньшее время. Другими словами, время в космическом корабле движется медленнее, чем на Земле.

До тех пор, пока космический маршрут ограничен солнечной системой и совершается с относительно малой скоростью, эта разница времен будет пренебрежимо малой. Но на больших расстояниях и при скоростях, близких к скорости света, «сокращение времени» (так иногда называют это явление) будет возрастать. Нет ничего невероятного в том, что со временем будет открыт способ, с помощью которого космический корабль, медленно ускоряясь, сможет достичь скорости, лишь немного меньшей скорости света. Это даст возможность посещать другие звезды в нашей Галактике, а возможно, даже и другие галактики. Итак, парадокс близнецов - больше чем просто головоломка для гостиной, когда-нибудь он станет повседневностью космических путешественников.

Допустим, что космонавт - один из близнецов - проходит расстояние в тысячу световых лет и возвращается: это расстояние мало по сравнению с размерами нашей Галактики. Есть ли уверенность, что космонавт не умрет задолго до конца пути? Не потребуется ли для его путешествия, как во многих научно-фантастических произведениях, целой колонии мужчин и женщин, поколениями живущих и умирающих, пока корабль совершает свое длинное межзвездное путешествие?

Ответ зависит от скорости движения корабля.

Если путешествие будет происходить со скоростью, близкой к скорости света, время внутри корабля будет течь много медленней. По земному времени путешествие будет продолжаться, конечно, более 2000 лет. С точки зрения космонавта, в корабле, если он движется достаточно быстро, путешествие может продлиться лишь несколько десятилетий!

Для тех читателей, которые любят численные примеры, приведем результат недавних расчетов Эдвина Макмиллана, физика из Калифорнийского университета в Беркли. Некий космонавт отправился с Земли к спиральной туманности Андромеды.

До нее немного меньше двух миллионов световых лет. Космонавт первую половину дороги проходит с постоянным ускорением 2g, затем с постоянным замедлением в 2g вплоть до достижения туманности. (Это удобный способ создания постоянного поля тяготения внутри корабля на все время длинного путешествия без помощи вращения.) Обратный путь совершается тем же способом. Согласно собственным часам космонавта продолжительность путешествия составит 29 лет. По земным часам пройдет почти 3 миллиона лет!

Вы сразу заметили, что возникают самые разнообразные привлекательные возможности. Сорокалетний ученый и его юная лаборантка влюбились друг в друга. Они чувствуют, что разница в возрасте делает их свадьбу невозможной. Поэтому он отправляется в длинное космическое путешествие, передвигаясь со скоростью, близкой к скорости света. Он возвращается в возрасте 41 года. Тем временем его подруга на Земле стала тридцатитрехлетней женщиной. Вероятно, она не смогла ждать возвращения любимого 15 лет и вышла замуж за кого-то другого. Ученый не может вынести этого и отправляется в другое продолжительное путешествие, тем более что ему интересно выяснить отношение последующих поколений к одной, созданной им теории, подтвердят они ее или опровергнут. Он возвращается на Землю в возрасте 42 лет. Подруга его прошлых лет давно умерла, и, что еще хуже, от его столь дорогой ему теории ничего не осталось. Оскорбленный, он отправляется в еще более длинный путь, чтобы, возвратившись в возрасте 45 лет, увидеть мир, проживший уже несколько тысячелетий. Возможно, что, подобно путешественнику из романа Уэллса «Машина времени», он обнаружит, что человечество выродилось. И вот тут он «сядет на мель». «Машина времени» Уэллса могла передвигаться в обоих направлениях, а у нашего одинокого ученого не будет способа вернуться обратно в привычный ему отрезок человеческой истории.

Если такие путешествия во времени станут возможными, то возникнут совершенно необычные моральные вопросы. Будет ли что-нибудь незаконного в том, например, что женщина вышла замуж за собственного пра-пра-пра-пра-пра-правнука?

Заметьте, пожалуйста: этот сорт путешествий во времени обходит все логические ловушки (этот бич научной фантастики), как, например, возможность попасть в прошлое и убить собственных родителей до вашего появления на свет или юркнуть в будущее и подстрелить самого себя, послав пулю в лоб.

Рассмотрим, например, положение с мисс Кэт из известного шуточного стишка:

Юная леди по имени Кэт

Двигалась много быстрее, чем свет.

Но попадала всегда не туда:

Быстро помчишься - придешь во вчера.

Перевод А. И. Базя

Возвратись она вчера, она должна была бы встретиться со своим двойником. В противном случае это не было бы действительно вчера. Но вчера не могло быть двух мисс Кэт, поскольку, отправляясь в путешествие во времени, мисс Кэт ничего не помнила о своей встрече со своим двойником, состоявшейся вчера. Итак, перед вами логическое противоречие. Такого типа путешествия во времени невозможны логически, если не предполагать существования мира, идентичного нашему, но движущегося по другому пути во времени (на день раньше). Даже при этом положение дел очень усложняется.

Заметьте также, что эйнштейновская форма путешествий во времени не приписывает путешественнику какого-то подлинного бессмертия или хотя бы долголетия. С точки зрения путешественника, старость подходит к нему всегда с нормальной скоростью. И лишь «собственное время» Земли кажется этому путешественнику несущимся с головокружительной скоростью.

Анри Бергсон, известный французский философ, был наиболее выдающимся из мыслителей, скрестивших шпаги с Эйнштейном из-за парадокса близнецов. Он много писал об этом парадоксе, потешаясь над тем, что казалось ему логически абсурдным. К сожалению, все им написанное доказало лишь то, что можно быть крупным философом без заметных знаний математики. В последние несколько лет протесты появились снова. Герберт Дингль, английский физик, «наиболее громко» отказывается поверить в парадокс. Уже немало лет он пишет остроумные статьи об этом парадоксе и обвиняет специалистов по теории относительности то в тупости, то в изворотливости. Поверхностный анализ, который будет проведен нами, конечно, не разъяснит полностью идущую полемику, участники которой быстро углубляются в сложные уравнения, но поможет уяснить общие причины, приведшие к почти единодушному признанию специалистами того, что парадокс близнецов будет осуществляться именно так, как написал об этом Эйнштейн.

Возражение Дингля, наиболее сильное из когда-либо выдвинутых против парадокса близнецов, заключается в следующем. Согласно общей теории относительности не существует никакого абсолютного движения, нет «избранной» системы отсчета.

Всегда можно выбрать движущийся предмет за неподвижную систему отсчета, не нарушая при этом никаких законов природы. Когда за систему отсчета принята Земля, то космонавт совершает длительное путешествие, возвращается и обнаруживает, что стал моложе брата-домоседа. А что произойдет, если систему отсчета связать с космическим кораблем? Теперь мы должны считать, что Земля проделала длительное путешествие и возвратилась назад.

В этом случае домоседом будет тот из близнецов, который находился в космическом корабле. Когда Земля возвратится, не станет ли брат, находившийся на ней, моложе? Если так произойдет, то в создавшемся положении парадоксальный вызов здравому смыслу уступит место очевидному логическому противоречию. Ясно, что каждый из близнецов не может быть моложе другого.

Дингль хотел бы сделать из этого вывод: или необходимо предположить, что по окончании путешествия возраст близнецов будет в точности одинаков, или принцип относительности должен быть отброшен.

Не выполняя никаких вычислений, нетрудно понять, что кроме этих двух альтернатив существуют и другие. Верно, что всякое движение относительно, но в данном случае имеется одно, очень важное различие между относительным движением космонавта и относительным движением домоседа. Домосед неподвижен относительно Вселенной.

Как эта разница сказывается на парадоксе?

Допустим, что космонавт отправляется проведать планету X где-то в Галактике. Его путешествие проходит при постоянной скорости. Часы домоседа связаны с инерциальной системой отсчета Земли, и их показания совпадают с показаниями всех остальных часов на Земле потому, что все они неподвижны по отношению друг к другу. Часы космонавта связаны с другой инерциальной системой отсчета, с кораблем. Если бы корабль постоянно придерживался одного направления, то не возникло бы никакого парадокса вследствие того, что не было бы никакого способа сравнить показания обоих часов.

Но у планеты X корабль останавливается и поворачивает обратно. При этом инерциальная система отсчета изменяется: вместо системы отсчета, движущейся от Земли, появляется система, движущаяся к Земле. При таком изменении возникают громадные силы инерции, поскольку при повороте корабль испытывает ускорение. И если ускорение при повороте будет очень большим, то космонавт (а не его брат-близнец на Земле) погибнет. Эти силы инерции возникают, конечно, из-за того, что космонавт ускоряется по отношению к Вселенной. Они не возникают на Земле, потому что Земля не испытывает такого ускорения.

С одной точки зрения, можно было бы сказать, что силы инерции, созданные ускорением, «вызывают» замедление часов космонавта; с другой точки зрения, возникновение ускорения просто обнаруживает изменение системы отсчета. Вследствие такого изменения мировая линия космического корабля, его путь на графике в четырехмерном пространстве - времени Минковского изменяется так, что полное «собственное время» путешествия с возвратом оказывается меньше, чем полное собственное время вдоль мировой линии близнеца-домоседа. При изменении системы отсчета участвует ускорение, но в расчет входят только уравнения специальной теории.

Возражение Дингля все еще сохраняется, так как точно те же вычисления можно было бы проделать и при предположении, что неподвижная система отсчета связана с кораблем, а не с Землей. Теперь в путь отправляется Земля, затем она возвращается обратно, меняя инерциальную систему отсчета. Почему бы не проделать те же вычисления и на основе тех же уравнений не показать, что время на Земле отстало? И эти вычисления были бы справедливы, не будь одного необычайной важности факта: при движении Земли вся Вселенная двигалась бы вместе с нею. При повороте Земли поворачивалась бы и Вселенная. Это ускорение Вселенной создало бы мощное гравитационное поле. А как уже было показано, тяготение замедляет часы. Часы на Солнце, например, тикают реже, чем такие же часы на Земле, а на Земле реже, чем на Луне. После выполнения всех расчетов оказывается, что гравитационное поле, созданное ускорением космоса, замедлило бы часы в космическом корабле по сравнению с земными в точности на столько же, на сколько они замедлялись в предыдущем случае. Гравитационное поле, конечно, не повлияло на земные часы. Земля неподвижна относительно космоса, следовательно, на ней и не возникало дополнительного гравитационного поля.

Поучительно рассмотреть случай, при котором возникает точно такая же разница во времени, хотя никаких ускорений нет. Космический корабль А пролетает мимо Земли с постоянной скоростью, направляясь к планете X. В момент прохождения корабля мимо Земли часы на нем устанавливаются на ноль. Корабль А продолжает свое движение к планете X и проходит мимо космического корабля Б, движущегося с постоянной скоростью в противоположном направлении. В момент наибольшего сближения корабль А по радио сообщает кораблю Б время (измеренное по своим часам), прошедшее с момента пролета им мимо Земли. На корабле Б запоминают эти сведения и продолжают с постоянной скоростью двигаться к Земле. Проходя мимо Земли, они сообщают на Землю сведения о времени, затраченном А на путешествие с Земли до планеты X, а также время, затраченное Б (и измеренное по его часам) на путешествие от планеты X до Земли. Сумма этих двух промежутков времени будет меньше, чем время (измеренное по земным часам), протекшее с момента прохождения А мимо Земли до момента прохождения Б.

Эта разница во времени может быть вычислена по уравнениям специальной теории. Никаких ускорений здесь не было. Конечно, в данном случае нет и парадокса близнецов, поскольку нет космонавта, улетевшего и возвратившегося назад. Можно было бы предположить, что путешествующий близнец отправился на корабле А, затем пересел на корабль Б и вернулся обратно; но этого нельзя сделать без перехода от одной инерциальной системы отсчета к другой. Чтобы сделать такую пересадку, он должен был бы подвергнуться действию потрясающе мощных сил инерции. Эти силы вызывались бы тем, что изменилась его система отсчета. При желании мы могли бы сказать, что силы инерции замедлили часы близнеца. Однако если рассматривать весь эпизод с точки зрения путешествующего близнеца, связав его с неподвижной системой отсчета, то в рассуждения войдет сдвигающийся космос, создающий гравитационное поле. (Главный источник путаницы при рассмотрении парадокса близнецов заключается в том, что положение может быть описано с разных точек зрения.) Независимо от принятой точки зрения уравнения теории относительности всегда дают одну и ту же разницу во времени. Эту разницу можно получить, пользуясь одной лишь специальной теорией. И вообще для обсуждения парадокса близнецов мы привлекли общую теорию лишь для того, чтобы опровергнуть возражения Дингля.

Часто бывает невозможно установить, какая из возможностей «правильная». Путешествующий близнец летает туда и обратно или это проделывает домосед вместе с космосом? Есть факт: относительное движение близнецов. Имеется, однако, два различных способа рассказать об этом. С одной точки зрения, изменение инерциальной системы отсчета космонавта, создающее силы инерции, приводит к разнице в возрасте. С другой точки зрения, действие сил тяготения перевешивает эффект, связанный с изменением Землей инерциальной системы. С любой точки зрения домосед и космос неподвижны по отношению друг к другу. Итак, положение полностью различно с разных точек зрения, несмотря на то что относительность движения строго сохраняется. Парадоксальная разница в возрасте объясняется независимо от того, какой из близнецов считается покоящимся. Нет необходимости отбрасывать теорию относительности.

А теперь может быть задан интересный вопрос.

Что, если в космосе нет ничего, кроме двух космических кораблей, А и Б? Пусть корабль А, используя свой ракетный двигатель, ускорится, совершит длинное путешествие и вернется назад. Будут ли предварительно синхронизированные часы на обоих кораблях вести себя по-прежнему?

Ответ будет зависеть от того, чьего взгляда на инерцию вы придерживаетесь - Эддингтона или Денниса Скьяма. С точки зрения Эддингтона - «да». Корабль А ускоряется по отношению к пространственно-временной метрике космоса; корабль Б - нет. Их поведение несимметрично и приведет к обычной разнице в возрасте. С точки зрения Скьяма- «нет». Имеет смысл говорить об ускорении только по отношению к другим материальным телам. В данном случае единственными предметами являются два космических корабля. Положение полностью симметрично. И действительно, в данном случае нельзя говорить об инерциальной системе отсчета потому, что нет инерции (кроме крайне слабой инерции, созданной присутствием двух кораблей). Трудно предсказать, что случилось бы в космосе без инерции, если бы корабль включил свои ракетные двигатели! Как выразился с английской осторожностью Скьяма: «Жизнь была бы совсем другой в такой Вселенной!»

Поскольку замедление часов путешествующего близнеца можно рассматривать как гравитационное явление, любой опыт, который показывает замедление времени под действием тяжести, представляет собой косвенное подтверждение парадокса близнецов. В последние годы было получено несколько таких подтверждений с помощью нового замечательного лабораторного метода, основанного на эффекте Мёссбауэра. Молодой немецкий физик Рудольф Мёссбауэр в 1958 г. открыл способ изготовления «ядерных часов», с непостижимой точностью отмеряющих время. Представьте часы, «тикающие пять раз в секунду, и другие часы, тикающие так, что после миллиона миллионов тиканий они отстанут лишь на одну сотую тиканья. Эффект Мёссбауэра способен сразу же обнаружить, что вторые часы идут медленнее первых!

Опыты с применением эффекта Мёссбауэра показали, что время вблизи фундамента здания (где тяжесть больше) течет несколько медленнее, чем на его крыше. По замечанию Гамова: «Машинистка, работающая на первом этаже здания Эмпайр Стейт Билдинг, старится медленнее, чем ее сестра-близнец, работающая под самой крышей». Конечно, эта разница в возрасте неуловимо мала, но она есть и может быть измерена.

Английские физики, используя эффект Мёссбауэра, обнаружили, что ядерные часы, помещенные на краю быстро вращающегося диска диаметром всего в 15 см несколько замедляют свой ход. Вращающиеся часы можно рассматривать как близнеца, непрерывно изменяющего свою инерциальную систему отсчета (или как близнеца, на которого воздействует гравитационное поле, если считать диск покоящимся, а космос - вращающимся). Этот опыт является прямой проверкой парадокса близнецов. Наиболее прямой опыт будет выполнен тогда, когда ядерные часы поместят на искусственном спутнике, который будет вращаться с большой скоростью вокруг Земли.

Затем спутник возвратят и показания часов сравнят с теми часами, которые оставались на Земле. Конечно, быстро приближается то время, когда космонавт сможет сделать самую точную проверку, захватив ядерные часы с собой в далекое космическое путешествие. Никто из физиков, кроме профессора Дингля, не сомневается, что показания часов космонавта после его возвращения на Землю будут немного не совпадать с показаниями ядерных часов, оставшихся на Земле.

Из книги автора

8. Парадокс близнецов Какова была реакция всемирно известных ученых и философов на странный, новый мир относительности? Она была различной. Большинство физиков и астрономов, смущенные нарушением «здравого смысла» и математическими трудностями общей теории

Просим прощения, что давно не репостили увлекательные статьи по ТО. Продолжаем. Начало вот тут:

Ну а сегодня мы рассмотрим, пожалуй, самый известный из парадоксов относительности, который называется "парадокс близнецов".
Сразу говорю, что никакого парадокса на самом деле нет, а проистекает он от неправильного понимания происходящего. И если всё правильно понять, а это, уверяю, совсем не сложно, то никакого парадокса не будет.



Начнём мы с логической части, где посмотрим, как парадокс получается и какие логические ошибки к нему приводят. А потом перейдем к предметной части, в которой посмотрим механику того, что происходит при парадоксе.

Сперва напомню вам наше базовое рассуждение о замедлении времени.

Помните анекдот про Жору Батарейкина, когда за Жорой послали следить полковника, а за полковником - подполковника? Нам понадобится воображение, чтбы представить себя на месте подполковника, то есть, понаблюдать за наблюдателем.

Итак, постулат относительности гласит, что скорость света одинакова с точки зрения всех наблюдателей (во всех системах отсчёта, выражаясь наукообразно). Так вот, даже если наблюдатель полетит вдогонку свету со скоростью 2/3 скорости света, он всё равно увидит, что свет убегает от него с прежней скоростью.

Давайте посмотрим на эту ситуацию со стороны. Свет летит вперед со скоростью 300000 км/с, а вдогонку ему летит наблюдатель, со скоростью 200000 км/с. Мы-то видим, что расстояние между наблюдателем и светом увеличивается (в оригинале у автора описка - прим. Quantuz ) со скоростью 100000 км/с, но сам наблюдатель этого не видит, а видит те же самые 300000 км/с. Как это может быть так? Единственной (почти! ;-) причиной такому явлению может быть то, что наблюдатель замедлен. Он медленно двигается, медленно дышит и медленно измеряет скорость по медленным часам. В результате удаление со скоростью 100000 км/с он воспринимает, как удаление со скоростью 300000 км/с.

Помните другой анекдот, про двух наркоманов, которые увидели, как по небу несколько раз пронесся огненный шар, а потом оказалось, что они простояли на балконе три дня, а огненный шар - это было солнце? Так вот этот наблюдатель как раз и должен находиться в состоянии такого замедленного наркомана. Разумеется, это будет видно только нам, а сам он ничего особенного не заметит, ведь замедлятся все процессы вокруг него.

Описание эксперимента

Чтобы драматизировать данный вывод, неведомый автор из прошлого, возможно, сам Эйнштейн, придумал следующий мысленный эксперимент. На земле живут два брата-близнеца - Костя и Яша.


Если бы братья жили вместе на земле, то они синхронно прошли бы следующие стадии взросления и старения (прошу прощения за некоторую условность):


Но всё происходит не так.

Еще подростком Костя, назовём его космическим братом, садится в ракету и отправляется к звезде, расположенной в нескольких десятках световых лет от Земли.
Полёт совершается с околосветовой скоростью и поэтому путь туда и обратно занимает шестьдесят лет.

Костя, которого назовём земным братом, никуда не летит, а терпеливо ждет своего родственника дома.

Предсказание относительности

Когда космический брат возвращается, то земной оказывается постаревшим на шестьдесят лет.

Однако, поскольку космический брат находился всё время в движении, его время шло медленнее, поэтому, по возвращении, он окажется постаревшим всего на 30 лет. Один близнец окажется старше другого!



Многим кажется, что данное предсказание ошибочно и эти люди называют парадоксом близнецов само это предсказание. Но это не так. Предсказание совершенно истинно и мир устроен именно так!

Давайте еще раз посмотрим логику предсказания. Допустим, земной брат неотрывно наблюдает за космическим.

Кстати, я уже неоднократно говорил о том, что многие допускают здесь ошибку, неправильно интерпретируя понятие "наблюдает". Они думают, что наблюдение обязательно должно происходить при помощи света, например, в телескоп. Тогда, думают они, поскольку свет распространяется с конечной скоростью, всё, что наблюдается, будет видеться таким, каким оно было раньше, в момент испускания света. Из-за этого, думают эти люди, и возникает замедление времени, которое, таким образом, является кажущимся явлением.
Другим вариантом этого же заблуждения является списание всех явлений на эффект Доплера: поскольку космический брат удаляется от земного, то каждый новый "кадр изображения" приходит на Землю всё позже, а сами кадры, таким образом, следуют реже, чем надо, и влекут за собой замедление времени.
Оба объяснения неверны. Теория относительности не настолько глупа, чтобы не учитывать эти эффекты. Посмотрите сами на наше утверждение относительно скорости света. Мы там написали "всё равно увидит, что", но мы не имели в виду именно "увидит глазами". Мы имели в виду "получит в результате, с учётом всех известных явлений". Обратите внимание, что вся логика рассуждений нигде не основывается на том, что наблюдение происходит при помощи света. И если Вы всё время представляли себе именно это, то перечитайте всё заново, представляя, как надо!

Для неотрывного наблюдения надо, чтобы космический брат, допустим, каждый месяц отсылал на Землю факсы (по радио, со скоростью света) со своим изображением, а земной брат развешивал бы их на календаре с учётом задержки передачи. Получалось бы, что сначала земно брат вешает свою фотографию, а фотографию брата того же времени вешает позже, когда она до него долетает.

По теории он будет всё время видеть, что время у космического брата течёт медленнее. Оно будет течь медленнее в начале пути, в первой четверти пути, в последней четверти пути, в конце пути. И из-за этого будет постоянно накапливаться отставание. Только во время разворота космического брата, в тот миг, когда он остановится, чтобы полететь назад, его время будет идти с той же скоростью, что и на Земле. Но это не изменит итогового результата, так как суммарное отставание всё равно будет. Следовательно, в момент возвращения космического брата отставание сохранится и значит, оно уже останется навсегда.


Как видите, логических ошибок тут нет. Однако, вывод выглядит очень удивительным. Но тут ничего не поделаешь: мы живем в удивительном мире. Данный вывод многократно подтверждался, как для элементарных частиц, которые проживали больше времени, если находились в движении, так и для самых обыкновенных, только очень точных (атомных) часов, которые отправлялись в космический полёт и потом обнаруживалось, что они отстают от лабораторных на доли секунды.

Подтвердился не только сам факт отставания, но и его численное значение, которое можно рассчитать по формулам из одного из предыдущих выпусков.

Кажущееся противоречие

Итак, отставание будет. Космический брат будет моложе земного, можете не сомневаться.

Но возникает другой вопрос. Ведь движение относительно! Следовательно, можно считать, что космический брат никуда не летал, а оставался всё время неподвижным. Зато вместо него в путешествие летал земной брат, вместе с самой планетой Земля и всем остальным. А раз так, то значит больше постареть должен космический брат, а земной - остаться более молодым.

Получается противоречие: оба рассмотрения, которые должны быть равнозначными по теории относительности, приводят к противоположным выводам.

Вот это противоречие и называется парадоксом близнецов.

Инерциальные и неинерциальные системы отсчёта

Как же нам разрешить это противоречие? Как известно, противоречий быть не может:-)

Поэтому мы должны придумать, что же мы такого не учли, из-за чего возникло противоречие?

Сам вывод того, что время должно замедляться - безупречен, ибо он слишком прост. Следовательно, ошибка в рассуждениях должна присутствовать позже, там, где мы предположили, что братья равноправны. Значит, на самом деле братья неравноправны!

Я уже говорил в самом первом выпуске, что не всякая относительность, которая кажется, существует на самом деле. Например, может показаться, что если космический брат разгоняется прочь от Земли, то это равносильно тому, что он остаётся на месте, а разгоняется сама Земля, прочь от него. Но это не так. Природа не соглашается с этим. По каким-то причинам природа создаёт для того, кто разгоняется перегрузки: его прижимает к креслу. А для того, кто не разгоняется - перегрузок не создаёт.

Почему природа так поступает - в данный момент не важно. В данный момент важно научиться представлять себе природу как можно правильней.

Итак, братья могут быть неравноправны при условии, что один из них разгоняется или тормозит. Но у нас ведь именно такая ситуация: улететь с Земли и вернуться на неё можно только разогнавшись, развернувшись и затормозив. Во всех этих случаях космический брат испытывал перегрузки.

Каков вывод? Логический вывод прост: мы не имеем права заявлять, что братья равноправны. Следовательно, рассуждения о замедлении времени верны лишь с точки зрения одного из них. Какого? Разумеется, земного. Почему? Потому, что мы не задумывались о перегрузках и представляли все так, словно их не было. Мы, например, не можем утверждать, что в условиях перегрузок скорость света остаётся постоянной. Следовательно, мы не можем утверждать, что в условиях перегрузок происходит замедление времени. Всё, что мы утверждали - мы утверждали для случая отсутствия перегрузок.

Когда учёные дошли до этого момента, они поняли, что им требуется специальное название для описания "нормального" мира, мира без перегрузок. Такое описание было названо описанием с точки зрения инерциальной системы отсчёта (сокращенно - ИСО). Новое же описание, которое еще не было создано, было названо, естественно, описанием с точки зрения неинерциальной системы отсчёта .

Что же такое инерциальная система отсчёта (ИСО)

Ясно, что первое , что мы можем сказать об ИСО - это такое описание мира, которое нам кажется "нормальным". То есть, это то описание, с которого мы начали.

В инерциальных системах отсчёта действует так называемый закон инерции - каждое тело, будучи предоставлено самому себе, либо остаётся в покое, либо движется равномерно и прямолинейно. Из-за этого системы и были так называны.

Если сесть в космический корабль, автомобиль или поезд, которые движутся абсолютно равномерно и прямолинейно с точки зрения ИСО, то внутри такого транспортного средства мы не сможем заметить движения. А это значит, что такая система наблюдения - тоже будет ИСО.

Следовательно, второе, что мы можем сказать об ИСО, что всякая система, движущаяся равномерно и прямолинейно относительно ИСО - также будет ИСО.

Что же мы можем сказать об не-ИСО? О них мы можем сказать пока лишь то, что система, движущаяся относительно ИСО с ускорением - будет не-ИСО.

Часть последняя: история Кости

Теперь попробуем выяснить, как же будет выглядеть мир с точки зрения космического брата? Пусть он также получает факсы от земного брата и развешивает их на календаре с учётом времени полета факса с Земли до корабля. Что он получит?

Чтобы до этого догадаться, нужно обратить внимание на следующий момент: во время путешествия космического брата есть участки, на которых он движется равномерно и прямолинейно. Допустим, при старте брат ускоряется с огромной силой так, что достигает крейсерской скорости за 1 день. После этого он летит много лет равномерно. Затем, в середине пути, он также стремительно за один день разворачивается и летит обратно опять равномерно. В конце пути он очень резко, за один день, тормозит.

Разумеется, если посчитать, какие нам нужны скорости и с каким ускорением надо разгоняться и разворачиваться, мы получим, что космического брата должно попросту размазать по стенкам. Да и сами стенки космического корабля, если они сделаны из современных материалов - не смогут выдержать таких перегрузок. Но нам сейчас важно не это. Допустим, у Кости имеются супер-пупер противоперегрузочные кресла, а корабль сделан из инопланетянской стали.

Что же получится?

В самый первый миг полета, как нам известно, возрасты братьев равны. В течение первой половины полёта он происходит инерциально, а значит, к нему применимо правило замедления времени. То есть, космический брат будет видеть, что земной стареет в два раза медленнее. Следовательно, через 10 лет полета Костя постареет на 10 лет, а Яша - только на 5.

К сожалению, я не нарисовал 15-летнего близнеца, поэтому я буду использовать 10-летнюю картинку с припиской "+5".

Аналогичный результат получается из анализа конца пути. В самый последний миг возрасты братьев равны 40 (Яша) и 70 (Костя), мы это знаем точно. Кроме того, мы знаем, что вторая половина полёта также протекала инерциально, а значит, облик мира с точки зрения Кости соответствует нашим выводам о замедлении времени. Следовательно, за 10 лет до окончания полёта, когда космическому брату будет 30 лет, он заключит, что земному уже 65, ибо до окончания полёта, когда соотношение будет 40/70, он будет стареть в два раза медленнее.

Опять-таки, у меня нет 65-летнего рисунка и я буду использовать 70-летний с пометкой "-5".

Сводку наблюдений космического брата я поместил ниже.



Как видим, у космического брата получается нестыковка. Всю первую половину пути он наблюдает, что земной брат стареет медленно и еле отрывается от начального возраста в 10 лет. Всю вторую половину полёта он наблюдает, как земной брат еле-еле подтягивается к возрасту 70 лет.

Где-то между этими участками, в самой середине полёта, должно происходить что-то, что "сшивает" процесс старения земного брата воедино.

Мы собственно, не будем дальше темнить и гадать, что же там такое происходит. Мы просто прямо и честно сделаем вывод, который следует с неизбежностью. Если за миг до разворота земному брату было 17,5 лет, а после разворота стало 52,5, то это означает ни что иное, как тот факт, что за время разворота космического брата у земного прошло 35 лет!

Выводы

Итак мы увидели, что существует так называемый парадокс близнецов, который заключается в кажущемся противоречии в том, у кого именно из двух близнецов замедляется время. Сам факт замедления времени - парадоксом не является.

Мы увидели, что существуют инерциальные и неинерциальные системы отсчёта, причём законы природы, полученные нами ранее, относились лишь к инерциальным системам. Именно в инерциальных системах наблюдается замедление времени на движущихся космических кораблях.

Мы получили, что в неинерциальных системах отсчёта, например, с точки зрения разворачивающихся космических кораблей, время ведёт себя еще более странно - оно проматывается вперёд.

Прим. Quantuz: автор дал еще ссылку на дополнительное разъяснение парадокса близнецов с флеш-анимацией. Можете попробовать перейти по ссылке на вэб-архив , где бережно сохранена эта статья. Рекомендуем для более глубокого понимания. До встречи на страницах нашего уютненького.

Отюцкий Геннадий Павлович

В статье рассмотрены сложившиеся подходы к рассмотрению парадокса близнецов. Показано: хотя формулировка этого парадокса связана со специальной теорией относительности, но к большинству попыток его объяснения привлекается общая теория относительности, что не является методологически корректным. Автор обосновывает положение о том, что сама формулировка "парадокса близнецов" изначально некорректна, ибо описывает событие, невозможное в рамках специальной теории относительности. Адрес статьи: отм^.агат^а.пе^т^епа^/З^СИУ/б/Зб.^т!

Источник

Исторические, философские, политические и юридические науки, культурология и искусствоведение. Вопросы теории и практики

Тамбов: Грамота, 2017. № 5(79) C. 129-131. ISSN 1997-292X.

Адрес журнала: www.gramota.net/editions/3.html

© Издательство "Грамота"

Информация о возможности публикации статей в журнале размещена на Интернет сайте издательства: www.gramota.net Вопросы, связанные с публикациями научных материалов, редакция просит направлять на адрес: [email protected]

Философские науки

В статье рассмотрены сложившиеся подходы к рассмотрению парадокса близнецов. Показано: хотя формулировка этого парадокса связана со специальной теорией относительности, но к большинству попыток его объяснения привлекается общая теория относительности, что не является методологически корректным. Автор обосновывает положение о том, что сама формулировка «парадокса близнецов» изначально некорректна, ибо описывает событие, невозможное в рамках специальной теории относительности.

Ключевые слова и фразы: парадокс близнецов; общая теория относительности; специальная теория относительности; пространство; время; одновременность; А. Эйнштейн.

Отюцкий Геннадий Павлович, д. филос. н., профессор

Российский государственный социальный университет, г. Москва

оИи2ку1@таИ- ги

ПАРАДОКС БЛИЗНЕЦОВ КАК ЛОГИЧЕСКАЯ ОШИБКА

Парадоксу близнецов посвящены тысячи публикаций. Этот парадокс трактуется как мысленный эксперимент, идея которого порождена специальной теорией относительности (СТО). Из основных положений СТО (включая идею о равноправии инерциальных систем отсчета - ИСО) вытекает вывод, что с точки зрения «неподвижных» наблюдателей все процессы, происходящие в системах, движущихся со скоростями, близкими к скорости света, неизбежно должны замедляться. Исходное условие: один из братьев-близнецов - путешественник - отправляется в космический полёт со скоростью, сопоставимой со скоростью света с, и последующим возвращением на Землю. Второй брат - домосед - остаётся на Земле: «С точки зрения домоседа часы движущегося путешественника имеют замедленный ход времени, поэтому при возвращении они должны отстать от часов домоседа. С другой стороны, относительно путешественника двигалась Земля, поэтому отстать должны часы домоседа. На самом деле братья равноправны, следовательно, после возвращения их часы должны показывать одно время» .

Для обострения «парадоксальности» подчеркивается тот факт, что из-за замедления хода часов вернувшийся путешественник должен быть моложе домоседа. Дж. Томсон в свое время показал, что космонавт в полете к звезде «ближайшая Центавра» состарится (при скорости 0,5 от с) на 14,5 лет, в то время как на Земле пройдет 17 лет . Однако по отношению к космонавту в инерциальном движении находилась Земля, поэтому замедляется ход земных часов, и домосед должен стать моложе путешественника. В кажущемся нарушении симметричности братьев усматривается парадоксальность ситуации.

В форму наглядной истории близнецов парадокс облечен П. Ланжевеном в 1911 г. Он объяснял парадокс посредством учета ускоренного движения космонавта при возвращении на Землю. Наглядная формулировка обрела популярность и в дальнейшем использовалась в объяснениях М. фон Лауэ (1913), В. Паули (1918) и др. Всплеск интереса к парадоксу в 1950-х гг. связан с желанием спрогнозировать обозримое будущее пилотируемой космонавтики. Критически осмысливались работы Г. Дингла, который в 1956-1959 гг. попытался опровергнуть сложившиеся объяснения парадокса. На русском языке была опубликована статья М. Борна, содержавшая контрдоводы к аргументам Дингла . Не остались в стороне и советские исследователи .

Обсуждение парадокса близнецов продолжается до сих пор со взаимоисключающими целями - либо обоснования, либо опровержения СТО в целом. Авторы первой группы считают: этот парадокс - надежный аргумент для доказательства несостоятельности СТО. Так, И. А. Верещагин, относя СТО к лжеучению, замечает по поводу парадокса: «"Моложе, но старше" и "старше, но моложе" - как всегда со времен Эвбулида. Теоретики, вместо того чтобы сделать заключение о ложности теории, выдают суждение: либо кто-то из спорщиков будет моложе другого, либо они останутся в одном возрасте» . На этом основании утверждается даже, что СТО остановила развитие физики на сто лет. Ю. А. Борисов идет дальше: «Преподавание теории относительности в школах и вузах страны является ущербным, лишено смысла и практической целесообразности» .

Другие авторы считают: рассматриваемый парадокс - кажущийся, и он не свидетельствует о противоречивости СТО, а наоборот, является ее надежным подтверждением. Они приводят сложные математические выкладки для учета изменения системы отсчета путешественником и стремятся доказать, что СТО не противоречит фактам. Можно выделить три подхода к обоснованию парадокса: 1) выявление логических ошибок в рассуждениях, которые привели к видимому противоречию; 2) детальные расчеты величины замедления времени с позиций каждого из близнецов; 3) включение в систему обоснования парадокса других теорий, кроме СТО. Объяснения второй и третьей групп нередко пересекаются.

Обобщающая логика «опровержений» выводов СТО включает четыре последовательных тезиса: 1) Путешественник, пролетая мимо любых часов, неподвижных в системе домоседа, наблюдает их замедленный ход. 2) Их накопленные показания при длительном полёте могут отстать от показаний часов путешественника сколь угодно сильно. 3) Быстро остановившись, путешественник наблюдает отставание часов, расположенных в «точке остановки». 4) Все часы в «неподвижной» системе идут синхронно, поэтому отстанут и часы брата на Земле, что противоречит выводу СТО .

Издательство ГРАМОТА

Четвертый тезис при этом считается само собой разумеющимся и выступает как бы окончательным выводом о парадоксальности ситуации с близнецами применительно к СТО. Первые два тезиса действительно логически вытекают из постулатов СТО. Однако авторы, разделяющие такую логику, не хотят видеть, что третий тезис не имеет к СТО никакого отношения, поскольку «быстро остановиться» из скорости, сопоставимой со скоростью света, можно, лишь получив гигантское замедление за счет мощной внешней силы. Однако «опровергатели» делают вид, что ничего значительного не происходит: путешественник по-прежнему «должен наблюдать отставание часов, расположенных в точке остановки». Но почему «должен наблюдать», ведь закономерности СТО в этой ситуации перестают действовать? Внятный ответ отсутствует, точнее, он постулируется без доказательств.

Подобные логические скачки характерны и для авторов, «обосновывающих» этот парадокс посредством демонстрации несимметричности близнецов. Для них третий тезис - решающий, поскольку как раз с ситуацией ускорения/замедления они связывают скачки хода часов . По Д. В. Скобельцыну, «логично считать причиной эффекта [замедления часов] "ускорение", которое испытывает В в начале своего движения в отличие от А, который... все время остается неподвижным в одной и той же инерциальной системе» . Действительно, для того, чтобы вернуться на Землю, путешественнику надо выйти из состояния инерциаль-ного движения, затормозить, развернуться, а затем снова разогнаться до скорости, сопоставимой со скоростью света, а достигнув Земли, вновь затормозить и остановиться. Логика Д. В. Скобельцына, как и многих его предшественников и последователей, опирается на тезис самого А. Эйнштейна, который, правда, формулирует парадокс часов (но не «близнецов»): «Если в точке А находятся двое синхронно идущих часов, и мы перемещаем одни из них по замкнутой кривой с постоянной скоростью до тех пор, пока они не вернутся в А (на что потребуется, скажем, t сек), то эти часы по прибытии в А будут отставать по сравнению с часами, остававшимися неподвижными» . Сформулировав общую теорию относительности (ОТО), Эйнштейн попытался применить её в 1918 г. к объяснению эффекта часов в шутливом диалоге Критика и Релятивиста. Парадокс объяснялся посредством учета влияния гравитационного поля на изменение ритма времени [Там же, с. 616-625].

Однако и опора на А. Эйнштейна не спасает авторов от теоретической подмены, которая становится наглядной, если привести простую аналогию. Представим «Правила дорожного движения» с единственным правилом: «Сколь бы широкой ни была дорога, водитель обязан ехать равномерно и прямолинейно со скоростью 60 км в час». Формулируем задачу: один близнец - домосед, другой - дисциплинированный водитель. Каким будет возраст каждого из близнецов, когда водитель вернется из длительного путешествия домой?

Эта задача не только не имеет решения, но и сформулирована некорректно: если водитель дисциплинирован, то он не сможет вернуться домой. Для этого он должен либо с постоянной скоростью описать полукруг (непрямолинейное движение!), либо затормозить, остановиться и начать разгон в обратном направлении (неравномерное движение!). В любом из вариантов он перестает быть дисциплинированным водителем. Путешественник из парадокса - такой же недисциплинированный космонавт, нарушающий постулаты СТО.

С подобными же нарушениями связаны объяснения на основе сравнений мировых линий обоих близнецов. Прямо указывается, что «мировая линия путешественника, улетевшего с Земли и возвратившегося к ней, прямой не является» , т.е. ситуация из сферы СТО перемещается в сферу ОТО. Но «если парадокс близнецов является внутренней проблемой СТО, то она должна решаться методами СТО, без выхода за ее рамки» .

Многие авторы, «доказывающие» непротиворечивость парадокса близнецов, считают равнозначными мысленный эксперимент с близнецами и реальные эксперименты с мюонами. Так, А. С. Каменев считает, что в случае движения космических частиц феномен «парадокса близнецов» проявляется «очень заметно»: «движущийся с субсветовой скоростью нестабильный мюон (мю-мезон) существует в собственной системе отсчета примерно 10-6 сек, тогда как время его жизни относительно лабораторной системы отсчета оказывается приблизительно на два порядка больше (примерно 10-4 сек), - но тут уже скорость частицы отличается от скорости света всего лишь на сотые доли процента» . О том же пишет Д. В. Скобельцын . Авторы не видят или не хотят видеть принципиальное отличие ситуации близнецов от ситуации мюонов: близнец-путешественник вынужден выйти из подчинения постулатам СТО, изменяя скорость и направление движения, а мюоны на протяжении всего времени ведут себя как инерциальные системы, поэтому их поведение и может быть объяснено с помощью СТО.

А. Эйнштейн специально подчеркивал, что СТО имеет дело с инерциальными системами и только с ними, утверждая равноценность только всех «галилеевых (неускоренных) систем координат, т.е. таких систем, по отношению к которым в достаточной мере изолированные материальные точки движутся прямолинейно и равномерно» . Поскольку СТО не рассматривает такие движения (неравномерные и непрямолинейные), благодаря которым путешественник мог бы вернуться на Землю, постольку СТО накладывает запрет на такое возвращение. Парадокс близнецов, таким образом, вовсе не является парадоксальным: в рамках СТО он просто не может быть сформулирован, если строго принимать в качестве предпосылок те исходные постулаты, на которых базируется эта теория.

Лишь весьма редкие исследователи пытаются рассматривать положение о близнецах в формулировке, совместимой со СТО. В этом случае поведение близнецов рассматривается как аналогичное уже известному поведению мюонов. В. Г. Пивоваров и О. А. Никонов вводят представление о двух «домоседах» А и В на расстоянии Ь в ИСО К, а также о путешественнике С в ракете К", летящей со скоростью V, сравнимой со скоростью

света (Рис. 1). Все трое родились одновременно в момент пролета ракетой точки С. После встречи близнецов С и В можно сравнить возраст А и С с помощью посредника В, который является копией близнеца А (Рис. 2).

Близнец А считает, что в момент встречи В и С часы близнеца С покажут меньшее время. Близнец С считает, что он покоится, следовательно, из-за релятивистского замедления хода часов меньше времени пройдет у близнецов А и В. Получен типичный парадокс близнецов.

Рис. 1. Близнецы А и С рождаются одновременно с близнецом В по часам ИСО К"

Рис. 2. Близнецы В и С встречаются после того, как близнец С пролетел расстояние L

Заинтересованного читателя отсылаем к математическим выкладкам, приведенным в статье . Остановимся лишь на качественных выводах авторов. В ИСО К близнец С пролетает расстояние Ь между А и В со скоростью V. Это и определит собственный возраст близнецов А и В к моменту встречи В и С. Однако в ИСО К" собственный возраст близнеца С определяется временем, за которое он с той же скоростью пролетает L" - расстояние между А и В в системе К". Согласно СТО, Ь" короче расстояния Ь. А значит, и время, затраченное близнецом С по его собственным часам на полет между А и В, меньше возраста близнецов А и В. Авторы статьи подчеркивают, что в момент встречи близнецов В и С собственный возраст близнецов А и В отличается от собственного возраста близнеца С, и «причиной этого отличия является асимметрия начальных условий задачи» [Там же, с. 140].

Таким образом, предложенная В. Г. Пивоваровым и О. А. Никоновым теоретическая формулировка ситуации с близнецами (совместимая с постулатами СТО) оказывается аналогичной ситуации с мюонами, подтвержденной физическими опытами.

Классическая формулировка «парадокса близнецов» в том случае, когда она соотносится со СТО, является элементарной логической ошибкой. Будучи логической ошибкой, парадокс близнецов в его «классической» формулировке не может выступать аргументом ни за, ни против СТО.

Значит ли это, что нельзя обсуждать тезис о близнецах? Конечно, можно. Но если речь идет о классической формулировке, то ее следует рассматривать как тезис-гипотезу, но не как парадокс, связанный со СТО, поскольку для обоснования тезиса привлекаются концепции, находящиеся за рамками СТО. Заслуживает внимания дальнейшее развитие подхода В. Г. Пивоварова и О. А. Никонова и обсуждение парадокса близнецов в формулировке, отличной от понимания П. Ланжевена и совместимой с постулатами СТО.

Список источников

1. Борисов Ю. А. Обзор критики теории относительности // Международный журнал прикладных и фундаментальных исследований. 2016. № 3. С. 382-392.

2. Борн М. Космические путешествия и парадокс часов // Успехи физических наук. 1959. Т. LXIX. С. 105-110.

3. Верещагин И. А. Лжеучения и паранаука ХХ века. Часть 2 // Успехи современного естествознания. 2007. № 7. С. 28-34.

4. Каменев А. С. Теория относительности А. Эйнштейна и некоторые философские проблемы времени // Вестник Московского государственного педагогического университета. Серия «Философские науки». 2015. № 2 (14). С. 42-59.

5. Парадокс близнецов [Электронный ресурс]. URL: https://ru.wikipedia.org/wiki/Парадокс_близнецов (дата обращения: 31.03.2017).

6. Пивоваров В. Г., Никонов О. А. Замечания к парадоксу близнецов // Вестник Мурманского государственного технического университета. 2000. Т. 3. № 1. С. 137-144.

7. Скобельцын Д. В. Парадокс близнецов и теория относительности. М.: Наука, 1966. 192 с.

8. Терлецкий Я. П. Парадоксы теории относительности. М.: Наука, 1966. 120 с.

9. Томсон Дж. П. Предвидимое будущее. М.: Иностранная литература, 1958. 176 с.

10. Эйнштейн А. Собрание научных трудов. М.: Наука, 1965. Т. 1. Работы по теории относительности 1905-1920. 700 с.

THE TWIN PARADOX AS A LOGIC ERROR

Otyutskii Gennadii Pavlovich, Doctor in Philosophy, Professor Russian State Social University in Moscow otiuzkyi@mail. ru

The article deals with the existing approaches to the consideration of the twin paradox. It is shown that although the formulation of this paradox is related to the special theory of relativity, the general theory of relativity is also used in most attempts to explain it, which is not methodologically correct. The author grounds a proposition that the formulation of the "twin paradox" itself is initially incorrect, because it describes the event that is impossible within the framework of the special theory of relativity.

Key words and phrases: twin paradox; general theory of relativity; special theory of relativity; space; time; simultaneity; A. Einstein.

Последние материалы раздела:

Интересные факты о физике
Интересные факты о физике

Какая наука богата на интересные факты? Физика! 7 класс - это время, когда школьники начинают изучать её. Чтобы серьезный предмет не казался таким...

Дмитрий конюхов путешественник биография
Дмитрий конюхов путешественник биография

Личное дело Федор Филиппович Конюхов (64 года) родился на берегу Азовского моря в селе Чкалово Запорожской области Украины. Его родители были...

Ход войны Русско японская 1904 1905 карта военных действий
Ход войны Русско японская 1904 1905 карта военных действий

Одним из крупнейших военных конфликтов начала XX века является русско-японская война 1904-1905 гг. Ее результатом была первая, в новейшей истории,...