От чего зависит электропроводность металлов. Электронная проводимость металлов — Гипермаркет знаний

Электропроводность металлов

При воздействии на металл электрического (или магнитного) поля (или разности температур) в нем возникают потоки заряженных частиц и энергии.

Явления возникновения этих потоков или токов принято называть кинетическими эффектами или явлениями переноса, иначе - транспортными эффектами, имея в виду воздействие стационарных полей на неподвижные проводники. В таком случае ток или поток пропорционален разности потенциалов (или разности температур), а коэффициент пропорциональности определяется только геометрическими размерами проводника и физическими свойствами самого металла.

При единичных геометрических размерах этот коэффициент зависит только от свойств данного металла и является его фундаментальной физической характеристикой, которая носит название кинетического коэффициента. При нахождении проводника в переменном поле возникающие в нем токи зависят не только от геометрических размеров и кинетического коэффициента, но и от частоты переменного поля, формы проводника, взаимного расположения элементов электрической цепи.

Сопротивление проводника при переменном токе существенно зависит от его частоты, обусловленной спинэффектом - вытеснением тока из центра проводника на периферию. Из многих возможных кинетических явлений наиболее известны в технике два: электропроводность - способность вещества проводить постоянный электрический ток под действием не изменяющегося во времени электрического поля, и теплопроводность - аналогично по отношению к разности температур и тепловому потоку. Оба эти явления выражаются (количественно) законами Ома и Фурье соответственно:

j = γ E; ω = k T.

где j - плотность тока, А/м;

γ - кинетический коэффициент электрической проводимости);

Е - напряженность электрического поля В/м;

ω - плотность теплового полтока;

Т – разность температур;

k – коэффициент теплопроводности.

На практике обычно используют удельное электрическое сопротивление или просто удельное сопротивление, Ом м

Однако, для проводников разрешается пользоваться внесистемной единицей измерения Ом мм2/м, или рекомендуется применять равную по размерности единицу СИ мкОм/м. Переход от одной единицы к другой в этом случае: 1 Ом м = 10 6 мкОм м = 10 6 Ом мм2/м.

Сопротивление проводника произвольных размеров с постоянным поперечным сечением определятся:

где l – длина проводника, м;

S – площадь проводника, м2.

Металлы обычно характеризуются как вещества пластичные с характерным «металлическим» блеском, хорошо проводящие электрический ток и теплоту.

Для электропроводности металлов типичны: низкое значение удельного сопротивления при нормальной температуре, значительный рост сопротивления при повышении температуры, достаточно близкий к прямой пропорциональности; при понижении температуры до температуры, близких к абсолютному нулю, сопротивление металлов уменьшается до очень малых значений, составляющих для наиболее чистых металлов до 10-3 или даже меньшую долю сопротивления при нормальных, + 20 0С, температурах.

Для них также характерно наличие связи между удельной электропроводностью и удельной теплопроводностью, которая описывается эмпирическим законом Видемана – Франца, как отношение k / γ приближенно одинаково для разных материалов при одинаковой температуре. Частное от деления k / γ на абсолютную температуру T (L0 = k / (γ T)). называется числом Лоренца, является (для всех металлов) величиной мало отличающихся при всех температурах.

Теория кинетических явлений в металлах может объяснить форму зависимостей кинетических коэффициентов от температуры, давления и других факторов, с ее помощью также можно вычислить и их значения. Для этого рассмотрим внутреннее строение металлов.

Фундаментальная идея этого раздела физики возникла на рубеже 19 –20 го столетия: атомы металла ионизированы, а отделившиеся от них валентные электроны свободны, т. е. принадлежат всему кристаллу.

Ионы строго упорядочены, образуют правильную кристаллическую решетку; их взаимодействие с отрицательно заряженным облаком свободных электронов такое, что делает кристалл стабильным, устойчивым образованием.

Наличие свободных электронов хорошо объясняет высокую электропроводность металлов, а их делокализация обеспечивает высокую пластичность. Значит, наиболее характерной особенностью внутреннего строения металлических проводников является наличие коллективизированных электронов, что подтверждает их электронное строение. В ее простейшей модели совокупность коллективизированных электронов объясняют как электронный газ, в котором частицы находятся в хаотическом тепловом движении.

Равновесие устанавливается (если пренебречь столкновениями между электронами) за счет столкновения электронов с ионами. Поскольку тепловое движение полностью не упорядочено, то, несмотря на заряженность электронов, тока в цепи (макроскопического) не наблюдается. Если к проводнику приложить внешнее электрическое поле, то свободные электроны, получив ускорение, выстраиваются в упорядоченную составляющую, которая ориентирована вдоль поля.

Поскольку ионы в узлах решетки неподвижны, упорядоченность в движении электронов проявится макроскопическим электрическим током. Удельная проводимость в этом случае может быть выражена с учетом средней длины свободного пробега λ электрона в ускоряющем поле напряженностью Е:

λ = е Е τ / (2 m) как γ = е2 n λ / (2 m vτ),

где е - заряд электрона;

n - число свободных электронов в единице объема металла;

λ - средняя длина свободного пробега электрона между двумя соударениями;

m - масса электрона;

v τ- средняя скорость теплового движения свободного электрона в металле.

С учетом положений квантовой механики

γ = К п2/3 / λ ,

где К - числовой коэффициент.

Диапазон удельных сопротивлений металлических проводников при нормальной температуре занимает всего три порядка. Для различных металлов скорости хаотического теплового движения электронов при определенной температуре примерно одинаковы.

Концентрации свободных электронов различаются незначительно, поэтому значение удельного сопротивления в основном зависит от средней длины свободного пробега электронов в данном проводнике, а она определяется структурой материала проводника. Все чистые металлы с наиболее правильной кристаллической решеткой имеют минимальные значения удельного сопротивления. Примеси, искажая решетку, приводят к увеличению удельного сопротивления



Температурный коэффициент удельного сопротивления или средний температурный коэффициент удельного сопротивления выразится

α = 1 / ρ (dρ / dt); α` = 1 / ρ (ρ2 - ρ1) / (T2 – T1),

где ρ1 и ρ2 – удельные сопротивления проводника при температурах Т1 и Т2 соответственно при Т2 > T1.

В технических справочниках обычно приводится величина α`, с помощью которой можно приближенно определить ρ при произвольной температуре Т:

ρ = ρ1 (1 + αρ` (Т - Т1)).

Это выражение дает точное значение удельного сопротивления р только для линейной зависимости ρ(Т). В остальных случаях этот метод является приближенным; он тем точнее, чем уже интервал температур, который использован для определения αρ`.

Удельное сопротивление большинства металлов, увеличивающих свой объем при плавлении, уменьшает плотность. У металлов, уменьшающих свой объем при плавлении, удельное сопротивление уменьшается; к таким металлам относят галлий, сурьму и висмут.

Удельное сопротивление сплавов всегда больше, чем у чистых металлов. Особенно это заметно, если при сплавлении они образуют твердый раствор, т.е. совместно кристаллизуются при затвердевании и атомы одного металла входят в решетку другого.

Если сплав двух металлов создает раздельную кристаллизацию и застывший раствор - смесь кристаллов каждой из составляющих, то удельная проводимость γ такого сплава изменяется с изменением состава почти линейно. В твердых же растворах эта зависимость (от содержания каждого из металлов) не линейна и имеет максимум, соответствующий определенному соотношению компонентов сплава.

Иногда при определенном соотношении между компонентами они образуют химические соединения (интерметаллиды), при этом они обладают не металлическим характером электропроводности, а являются электронными полупроводниками.

Температурный коэффициент линейного расширения проводников определяется так же, как и для диэлектриков по формуле

ТКl = α(l) = l / l (dl / dТ), (3.1)

где ТКl = α(l) -температурный коэффициент линейного расширении К-1

Этот коэффициент необходимо знать, чтобы иметь возможность оценить работу сопряженных материалов в различных конструкциях, а также исключить растрескивание или нарушение вакуумного соединения металла со стеклом или керамикой при изменении температуры. Кроме того, он входит в расчет температурного коэффициента электрического сопротивления проводов

ТКR = α(R) = α(ρ) - α(l).

ТермоЭДС проводников

ТермоЭДС возникает при соприкосновении двух различных проводников (или полупроводников), если температура их спаев неодинакова. Если два различных проводника соприкасаются, то между ними возникает контактная разность потенциалов. Для металлов А и В

Ucb - Uc + К Т / е ln(n0с / nоb),

где U с и U b - потенциалы соприкасающихся металлов; концентрация электронов в соответствующих металлах;

К - постоянная Болъцмана;

Т - температура;

е - абсолютная величина заряда электрона.

Если температура спаев металлов одинакова, то сумма разности потенциалов в замкнутой цепи равна нулю. Если же температура слоев различна (Т2 и Т1, например), то в этом случае

U = К / е (Т1 -Т2) ln(nc / пb). (3.2)

На практике выражение (3.2) не всегда соблюдается, и зависимость термоЭДС от температуры может быть нелинейной. Провод, составленный из двух изолированных проволок разных металлов или сплавов, называется термопарой и используется для измерения температур.

В таких случаях стараются использоватъ материалы, имеющие большой и стабильный коэффициент термоЭдС. для измерения высоких температур иногда приходится (особенно при измерении температур в агрессивных средах) применять термопары с меньшими коэффициентами термо ЭдС, но выдерживающими высокие температуры и не окисляющиеся в агрессивных средах.

Сплавы для термопар имеют различные сочетания, в том числе один электрод может быть из чистого металла. Наиболее распространенными являются никелевые и медно-никелевые сплавы. Для температур в пределах 1000 – 1200 0С используются термопары хромель – алюмель (ТХА), при более высоких температурах применяются электроды платина – платинородий; в этих сплавах родия составляет от 6,7 до 40,5 %. Марки таких термопар следующие: ПлРд-7, ПлРд-10, ПлРд-30, ПлРд-40.

Электрическая проводимость – это способность веществ проводить электрический ток под действием внешнего электрического поля. Электрическая проводимость – величина, обратная электрическому сопротивлению L = 1/ R .

где ρ – удельное сопротивление, Ом·м; - удельная электрическая проводимость, См/м (сименс/метр);S – поперечное сечение, м 2 ; l – длина проводника, м) (в электрохимии удельная электрическая проводимость () читается - каппа ).

Единица измерения L – сименс (См), 1 См = 1 Ом -1 .

Удельная электрическая проводимость раствора характеризует проводимость объема раствора, заключенного между двумя параллельными электродами, имеющими площадь по 1 м 2 и расположенными на расстоянии 1 м друг от друга. Единица измерения в системе СИ - См·м -1 .

Удельная проводимость раствора электролита определяется количеством ионов, переносящих электричество и скоростью их миграции:

, (2.5)

где α – степень диссоциации электролита; С – молярная концентрация эквивалента, моль/м 3 ; F – число Фарадея, 96485 Кл/моль;
- абсолютные скорости движения катиона и аниона (скорости при градиенте потенциала поля, равном 1 В/м); единица измерения скорости - м 2 В -1 с -1 .

Из уравнения (2.5) следует, что зависит от концентрации как для сильных так и для слабых электролитов (рисунок 2.1):

Рисунок 2.1 – Зависимость удельной электрической проводимости от концентрации электролитов в водных растворах

В разбавленных растворах при С → 0 стремится к удельной электропроводности воды, которая составляет около 10 -6 См/м и обусловлена присутствием ионов Н 3 О + и ОН - . С ростом концентрации электролита, вначале увеличивается, что отвечает увеличению числа ионов в растворе. Однако, чем больше ионов в растворе сильных электролитов, тем сильнее проявляется ионное взаимодействие, приводящее к уменьшению скорости движения ионов. У слабых электролитов в концентрированных растворах заметно снижается степень диссоциации и, следовательно, количество ионов, переносящих электричество. Поэтому, почти всегда, зависимость удельной электрической проводимости от концентрации электролита проходит через максимум.

2.1.3 Молярная и эквивалентная электрические проводимости

Чтобы выделить эффекты ионного взаимодействия, удельную электрическую проводимость делят на молярную концентрацию (С, моль/м 3), и получают молярную электрическую проводимость ; или делят на молярную концентрацию эквивалента и получаютэквивалентную проводимость.

. (2.6)

Единицей измерения является м 2 См/моль. Физический смысл эквивалентной проводимости состоит в следующем: эквивалентная проводимость численно равна электрической проводимости раствора, заключенного между двумя параллельными электродами, расположенными на расстоянии 1 м и имеющими такую площадь, что объем раствора между электродами содержит один моль эквивалента растворенного вещества (в случае молярной электрической проводимости – один моль растворенного вещества). Таким образом, в случае эквивалентной электрической проводимости в этом объеме будет N А положительных и N А отрицательных зарядов для раствора любого электролита при условии его полной диссоциации (N А – число Авогадро). Поэтому, если бы ионы не взаимодействовали друг с другом, то сохранялась бы постоянной при всех концентрациях. В реальных системахзависит от концентрации (рисунок 2.2). При С → 0,
→ 1, величинастремится к
, отвечающей отсутствию ионного взаимодействия. Из уравнений (2.5 и 2.6) следует:

Произведение
называютпредельной эквивалентной электрической проводимостью ионов , или предельной подвижностью ионов:

. (2.9)

Соотношение (2.9) установлено Кольраушем и называется законом независимого движения ионов . Предельная подвижность является специфической величиной для данного вида ионов и зависит только от природы растворителя и температуры. Уравнение для молярной электрической проводимости принимает вид (2.10):

, (2.10)

где
- число эквивалентов катионов и анионов, необходимых для образования 1 моль соли.

Пример:

В случае одновалентного электролита, например, HCl,
, то есть молярная и эквивалентная электрические проводимости совпадают.

Рисунок 2.2 – Зависимость эквивалентной электропроводности от концентрации для сильных (а) и слабых (б) электролитов

Для растворов слабых электролитов эквивалентная электрическая проводимость остается небольшой вплоть до очень низких концентраций, по достижении которых она резко поднимается до значений, сравнимых с сильных электролитов. Это происходит за счет увеличения степени диссоциации, которая, согласно классической теории электролитической диссоциации, растет с разбавлением и, в пределе, стремится к единице.

Степень диссоциации можно выразить, разделив уравнение (2.7) на (2.8):

.

С увеличением концентрации растворов сильных электролитов уменьшается, но незначительно. Кольрауш показал, чтотаких растворов при невысоких концентрациях подчиняется уравнению:

, (2.11)

где А – постоянная, зависящая от природы растворителя, температуры и валентного типа электролита.

По теории Дебая – Онзагера снижение эквивалентной электрической проводимости растворов сильных электролитов связано с уменьшением скоростей движения ионов за счет двух эффектов торможения движения ионов, возникающих из-за электростатистического взаимодействия между ионом и его ионной атмосферой. Каждый ион стремится окружить себя ионами противоположного заряда. Облако заряда называют ионной атмосферой, в среднем оно сферически симметрично.

Первый эффект – эффект электрофоретического торможения . При наложении электрического поля ион движется в одну сторону, а его ионная атмосфера – в противоположную. Но с ионной атмосферой за счет гидратации ионов атмосферы увлекается часть растворителя, и центральный ион при движении встречает поток растворителя, движущегося в противоположном направлении, что создает дополнительное вязкостное торможение иона.

Второй эффект – релаксационного торможения . При движении иона во внешнем поле атмосфера должна исчезать позади иона и образовываться впереди него. Оба эти процесса происходят не мгновенно. Поэтому впереди иона количество ионов противоположного знака меньше, чем позади, то есть облако становится несимметричным, центр заряда атмосферы смещается назад, и поскольку заряды иона и атмосферы противоположны, движение иона замедляется. Силы релаксационного и электрофоретического торможения определяются ионной силой раствора, природой растворителя и температурой. Для одного и того же электролита, при прочих постоянных условиях, эти силы возрастают с увеличением концентрации раствора.

Электропроводность есть способность тела пропускать электрический ток под действием электрического поля. Для характеристики этого явления служит величина удельной электропроводности σ. Как показывает теория , величину σ можно выразить через концентрацию n свободных носителей заряда, их заряд е, массу m, время свободного пробега τ e , длину свободного пробега λe и среднюю дрейфовую скорость < v > носителей заряда. Для металлов в роли свободных носителей заряда выступают свободные электроны, так что:

σ = ne 2 · τе / m = (n · e 2 / m) · (λe / < v >) = e · n · u

где u - подвижность носителей, т.е. физическая величина, численно равная дрейфовой скорости, приобретенной носителями в поле единичной напряженности, а именно

u = < v > / E = (e · τ е) / m

В зависимости от σ все вещества подразделяются; на проводники - с σ > 10 6 (Ом · м) -1 , диэлектрики - с σ > 10 -8 (Ом · м) -1 и полупроводники - с промежуточным значением σ.

С точки зрения зонной теории деление веществ на проводники, полупроводники и диэлектрики определяется тем, как заполнена электронами при 0 К валентная зона кристалла: частично или полностью.

Энергия, которая сообщается электронам даже слабым электрическим полем, сравнима с расстоянием между уровнями в энергетической зоне. Если в зоне есть свободные уровни, то электроны, возбужденные внешним электрическим полем, будут заполнять их. Квантовое состояние системы электронов будет изменяться, и в кристалле появится преимущественное (направленное) движение электронов против поля, т.е. электрический ток. Такие тела (рис.10.1,а) являются проводниками.

Если валентная зона заполнена целиком, то изменение состояния системы электронов может произойти только при переходе их через запрещенную зону. Энергия внешнего электрического поля такой переход осуществить не может. Перестановка электронов внутри полностью заполненной зоны не вызывает изменения квантового состояния системы, т.к. сами по себе электроны неразличимы.

В таких кристаллах (рис. 10.1,б) внешнее электрическое поле не вызовет появление электрического тока, и они будут непроводниками (диэлектриками). Из этой группы веществ выделены те у которых ширина запрещенной зоны ΔE ≤ 1 эВ (1эВ = 1,6 · 10 -19 Дж).

Переход электронов через запрещенную зону у таких тел можно осуществить, например, посредством теплового возбуждения. При этом освобождается часть уровней - валентной зоны и частично заполняются уровни следующей за ней свободной зоны (зоны проводимости). Эти вещества являются полупроводниками.


Согласно выражению (10.1) изменение электропроводности (электрического сопротивления) тел с температурой может быть вызвано изменением концентрации n носителей заряда или изменением их подвижности u .

Металлы

Квантово-механические расчеты показывают, что для металлов концентрация n свободных носителей заряда (электронов) равна:

n = (1 / 3π 2) · (2mE F / ђ 2) 3/2

где ђ = h / 2π = 1,05 · 10 -34 Дж · с - нормированная постоянная Планка, E F - энергия Ферми.

Так как E F практически от температуры T не зависит, то и концентрация носителей заряда от температуры не зависит. Следовательно, температурная зависимость электропроводности металлов будет полностью определяться подвижностью u электронов, как и следует из формулы (10.1). Тогда в области высоких температур

u ~ λ e / ~ T -1

а в области низких температур

u ~ λ e / ~ const (T).


Степень подвижности носителей заряда будет определяться процессами рассеяния, т.е. взаимодействием электронов с периодическим полем решетки. Так как поле идеальной решетки строго периодическое, а состояние электронов - стационарное, то рассеяние (возникновение электрического сопротивления металла) может быть вызвано только дефектами (примесными атомами, искажениями структуры и т.д.) и тепловыми колебаниями решетки (фононами).

Вблизи 0 К, где интенсивность тепловых колебаний решетки и концентрация фононов близка к нулю, преобладает рассеяние на примесях (электрон-примесное рассеяние). Проводимость при этом практически не меняется, как следует из формулы (10.4), а удельное сопротивление


имеет постоянное значение, которое называется удельным остаточным сопротивлением ρ ост или удельным примесным сопротивлением ρ прим, т.е.

ρ ост (или ρ прим) = const (T)

В области высоких температур у металлов становится преобладающим электрон-фононный механизм рассеяния. При таком механизме рассеяния электропроводность обратно пропорциональна температуре, как видно из формулы (10.3), а удельное сопротивление прямо пропорционально температуре:

График зависимости удельного сопротивления ρ от температуры приведен на рис. 10.2

При температурах отличных от 0 К и достаточно большом количестве примесей могут иметь место как электрон-фононное, так и электрон-примесное рассеяние; суммарное удельное сопротивление имеет вид


ρ = ρ прим + ρ ф

Выражение (10.6) представляет собой правило Матиссена об аддитивности сопротивления. Следует отметить, что как электрон-фононное, так и электрон-примесное рассеяние носит хаотический характер.

Полупроводники

Квантово-механические расчеты подвижности носителей в полупроводниках показали, что, во-первых, с повышением температуры подвижность носителей u убывает, и решающим в определении подвижности является тот механизм рассеяния, который обуславливает наиболее низкую подвижность. Во-вторых, зависимость подвижности носителей заряда от уровня легирования (концентрации примесей) показывает, что при малом уровне легирования подвижность будет определяться рассеянием на колебаниях решетки и, следовательно, не должна зависеть от концентрации примесей.

При высоких уровнях легирования она должна определяться рассеиванием на ионизированной легирующей примеси и уменьшаться с увеличением концентрации примеси. Таким образом, изменение подвижности носителей заряда не должно вносить заметного вклада в изменение электрического сопротивления полупроводника.

В соответствии с выражением (10.1) основной вклад в изменение электропроводности полупроводников должно вносить изменение концентрации п носителей заряда .

Главным признаком полупроводников является активационная природа проводимости, т.е. резко выраженная зависимость концентрации носителей от внешних воздействий, как-то температуры, облучения и т.д. Это объясняется узостью запрещенной зоны (ΔЕ < 1 эВ) у собственных полупроводников и наличием дополнительных уровней в запрещенной зоне у примесных полупроводников.

Электропроводность химически чистых полупроводников называется собственной проводимостью . Собственная проводимость полупроводников возникает в результате перехода электронов (n) с верхних уровней валентной зоны в зону проводимости и образованием дырок (p) в валентной зоне:


σ = σ n + σ ρ = e · n n · u n + e · n ρ · u ρ

где n n и· n ρ - концентрация электронов и дырок,
u n и u ρ - соответственно их подвижности,
e - заряд носителя.

С повышением температуры концентрация электронов в зоне проводимости и дырок в валентной зоне экспоненциально возрастает:

n n = u nо · exp(-ΔE / 2kT) = n ρ = n ρо · exp(-ΔE / 2kT)

где n nо и n pо - концентрации электронов и дырок при Т → ∞,
k = 1,38 · 10 –23 Дж/ К - постоянная Больцмана.

На рисунке 10.3,а приведен график зависимости логарифма электропровод-ности ln σ собственного полупроводника от обратной температуры 1 / Т: ln σ = = ƒ(1 / Т). График представляет собой прямую, по наклону которой можно опреде-лить ширину запрещенной зоны ∆Е.



Электропроводность легированных полупроводников обусловлена наличием в них примесных центров. Температурная зависимость таких полупроводников определяется не только концентрацией основных носителей, но и концентрацией носителей, поставляемых примесными центрами. На рис. 10.3,б приведены графики зависимости ln σ = ƒ (1 / Т) для полупроводников с различной степенью легирования (n1 < n2 < n3, где n – концентрация примеси).

Для слаболегированных полупроводников в области низких температур преобладают переходы с участием примесных уровней. С повышением температуры растет концентрация примесных носителей, значит растет и примесная проводимость. При достижении т. А (см. рис. 10.3,б; кривая 1) – температуры истощения примеси Т S1 – все примесные носители будут переведены в зону проводимости.

Выше температуры Т S1 и до температуры перехода к собственной проводимости Т i1 (см. т. В, кривая 1, рис. 10.3,б) электропроводность падает, а сопротивление полупроводника растет. Выше температуры Т i1 преобладает собственная электропроводность, т.е. в зону проводимости вследствие теплового возбуждения переходят собственные носители заряда. В области собственной проводимости σ растет, а ρ падает.

Для сильнолегированных полупроводников, у которых концентрация примеси n ~ 10 26 м –3 , т.е. соизмерима с концентрацией носителей заряда в металлах (см. кривая 3, рис. 10.3,б), зависимость σ от температуры наблюдается только в области собственной проводимости. С ростом концентрации примесей величина интервала АВ (АВ > A"B" > A"B") уменьшается (см. рис. 10.3,б).

Как в области примесной проводимости, так и в области собственной проводимости преобладает электрон-фононный механизм рассеяния. В области истощения примеси (интервалы AB, A"B", A"B") вблизи температуры Т S преобладает электрон-примесное рассеяние. По мере увеличения температуры (перехода к Т i) начинает преобладать электрон-фононное рассеяние. Таким образом, интервал АВ (A"B" или A"B"), называемый областью истощения примеси, является также областью перехода от механизма примесной проводимости к механизму собственной проводимости.

Электронная проводимость металлов была впервые экспериментально доказана немецким физиком Э.Рикке в 1901 г. Через три плотно прижатых друг к другу отполированных цилиндра - медный, алюминиевый и снова медный - длительное время (в течение года) пропускали электрический ток. Общий заряд, прошедший за это время, был равен 3.5·10 6 Кл. Поскольку массы атомов меди и алюминия существенно отличаются друг от друга, то массы цилиндров должны были бы заметно измениться, если бы носителями заряда были ионы.

Результаты опытов показали, что масса каждого из цилиндров осталась неизменной. В соприкасающихся поверхностях были обнаружены лишь незначительные следы взаимного проникновения металлов, которые не превышали результатов обычной диффузии атомов в твердых телах. Следовательно, свободными носителями заряда в металлах являются не ионы, а такие частицы, которые одинаковы и в меди, и в алюминии. Такими частицами могли быть только электроны.

Прямое и убедительное доказательство справедливости этого предположения было получено в опытах, поставленных в 1913 г. Л. И. Мандельштамом и Н. Д. Папалекси и в 1916 г. Т. Стюартом и Р. Толменом.

На катушку наматывают проволоку, концы которой припаивают к двум металлическим дискам, изолированным друг от друга (рис. 1). К концам дисков с помощью скользящих контактов присоединяют гальванометр.

Катушку приводят в быстрое вращение, а затем резко останавливают. После резкой остановки катушки свободные заряженные частицы будут некоторое время двигаться вдоль проводника по инерции, и, следовательно, в катушке возникнет электрический ток. Ток будет существовать короткое время, так как из-за сопротивления проводника заряженные частицы тормозятся и упорядоченное движение частиц прекращается.

Направление тока говорит о том, что он создается движением отрицательно заряженных частиц. Переносимый при этом заряд пропорционален отношению заряда частиц, создающих ток, к их массе, т.е. . Поэтому, измеряя заряд, проходящий через гальванометр за все время существования тока в цепи, удалось определить отношение . Оно оказалось равным 1,8·10 11 Кл/кг. Эта величина совпадает с отношением заряда электрона к его массе, найденным ранее из других опытов.

Таким образом, электрический ток в металлах создается движением отрицательно заряженных частиц электронов. Согласно классической электронной теории проводимости металлов (П. Друде, 1900 г., Х.Лоренц, 1904 г.), металлический проводник можно рассматривать как физическую систему совокупности двух подсистем:

  1. свободных электронов с концентрацией ~ 10 28 м -3 и
  2. положительно заряженных ионов, колеблющихся около положения равновесия.

Появление свободных электронов в кристалле можно объяснить следующим образом.

При объединении атомов в металлический кристалл слабее всего связанные с ядром атома внешние электроны отрываются от атомов (рис. 2). Поэтому в узлах кристаллической решетки металла располагаются положительные ионы, а в пространстве между ними движутся электроны, не связанные с ядрами своих атомов. Эти электроны называются свободными или электронами проводимости . Они совершают хаотическое движение, подобное движению молекул газа. Поэтому совокупность свободных электронов в металлах называют электронным газом .

Если к проводнику приложено внешнее электрическое поле, то на беспорядочное хаотическое движение свободных электронов накладывается направленное движение под действием сил электрического поля, что и порождает электрический ток. Скорость движения самих электронов в проводнике - несколько долей миллиметра в секунду, однако возникающее в проводнике электрическое поле распространяется по всей длине проводника со скоростью, близкой к скорости света в вакууме (3·10 8 м/с).

Так как электрический ток в металлах образуют свободные электроны, то проводимость металлических проводников называется электронной проводимостью .

Электроны под влиянием постоянной силы, действующей со стороны электрического поля, приобретают определенную скорость упорядоченного движения (ее называют дрейфовой). Эта скорость не увеличивается в дальнейшем со временем, так как при столкновении с ионами кристаллической решетки электроны передают кинетическую энергию, приобретенную в электрическом поле, кристаллической решетке. В первом приближении можно считать, что на длине свободного пробега (это расстояние, которое электрон проходит между двумя последовательными столкновениями с ионами) электрон движется с ускорением и его дрейфовая скорость линейно возрастает со временем

В момент столкновения электрон передает кинетическую энергию кристаллической решетке. Потом он опять ускоряется, и процесс повторяется. В результате средняя скорость упорядоченного движения электронов пропорциональна напряженности электрического поля в проводнике и, следовательно, разности потенциалов на концах проводника, так как , где l - длина проводника.

Известно, что сила тока в проводнике пропорциональна скорости упорядоченного движения частиц

а значит, согласно предыдущему, сила тока пропорциональна разности потенциалов на концах проводника: I ~ U. В этом состоит качественное объяснение закона Ома на основе классической электронной теории проводимости металлов.

Однако в рамках этой теории возникли трудности. Из теории следовало, что удельное сопротивление должно быть пропорционально корню квадратному из температуры (), между тем, согласно опыту, ~ Т. Кроме того, теплоемкость металлов, согласно этой теории, должна быть значительно больше теплоемкости одноатомных кристаллов. В действительности теплоемкость металлов мало отличается от теплоемкости неметаллических кристаллов. Эти трудности были преодолены только в квантовой теории.

В 1911 г. голландский физик Г. Камерлинг-Оннес, изучая изменение электрического сопротивления ртути при низких температурах, обнаружил, что при температуре около 4 К (т.е. при -269°С) удельное сопротивление скачком уменьшается (рис. 3) практически до нуля. Это явление обращения электрического сопротивления в нуль Г. Камерлинг-Оннес назвал сверхпроводимостью.

В дальнейшем было выяснено, что более 25 химических элементов - металлов при очень низких температурах становятся сверхпроводниками. У каждого из них своя критическая температура перехода в состояние с нулевым сопротивлением. Самое низкое значение ее у вольфрама - 0,012К, самое высокое у ниобия - 9К.

Сверхпроводимость наблюдается не только у чистых металлов, но и у многих химических соединений и сплавов. При этом сами элементы, входящие в состав сверхпроводящего соединения, могут и не являться сверхпроводниками. Например, NiBi, Au 2 Bi, PdTe, PtSb и другие.

Вещества в сверхпроводящем состоянии обладают необычными свойствами:

  1. электрический ток в сверхпроводнике может существовать длительное время без источника тока;
  2. внутри вещества в сверхпроводящем состоянии нельзя создать магнитное поле:
  3. магнитное поле разрушает состояние сверхпроводимости. Сверхпроводимость - явление, объясняемое с точки зрения квантовой теории. Достаточно сложное его описание выходит за рамки школьного курса физики.

Широкому применению сверхпроводимости до недавнего времени препятствовали трудности, связанные с необходимостью охлаждения до сверхнизких температур, для чего использовался жидкий гелий. Тем не менее, несмотря на сложность оборудования, дефицитность и дороговизну гелия, с 60-х годов XX века создаются сверхпроводящие магниты без тепловых потерь в их обмотках, что сделало практически возможным получение сильных магнитных полей в сравнительно больших объемах. Именно такие магниты требуются для создания установок управляемого термоядерного синтеза с магнитным удержанием плазмы, для мощных ускорителей заряженных частиц. Сверхпроводники используются в различных измерительных приборах, прежде всего в приборах для измерения очень слабых магнитных полей с высочайшей точностью.

В настоящее время в линиях электропередачи на преодоление сопротивления проводов уходит 10 - 15% энергии. Сверхпроводящие линии или хотя бы вводы в крупные города принесут громадную экономию. Другая область применения сверхпроводимости - транспорт.

На основе сверхпроводящих пленок создан ряд быстродействующих логических и запоминающих элементов для счетно-решающих устройств. При космических исследованиях перспективно использование сверхпроводящих соленоидов для радиационной защиты космонавтов, стыковки кораблей, их торможения и ориентации, для плазменных ракетных двигателей.

В настоящее время созданы керамические материалы, обладающие сверхпроводимостью при более высокой температуре - свыше 100К, то есть при температуре выше температуры кипения азота. Возможность охлаждать сверхпроводники жидким азотом, который имеет на порядок более высокую теплоту парообразования, существенно упрощает и удешевляет все криогенное оборудование, обещает огромный экономический эффект.

Для того, чтобы говорить об электропроводности, нужно вспомнить о природе электрического тока как такового. Так, при помещении какого-либо вещества внутрь электрического поля происходит передвижение зарядов. Данное движение провоцирует действие как раз электрического поля. Именно поток электронов и есть электроток. Сила тока, как известно нам из школьных уроков по физике, измеряется в Амперах и обозначается латинской буквой I. 1 А представляет собой электроток, при котором за время равное одной секунде проходит заряд в 1 Кулон.

Электрический ток бывает нескольких видов, а именно:

  • постоянный ток, который не изменяется в отношении показателя и траектории движения в любой момент времени;
  • переменный ток, который изменяет свой показатель и траекторию во времени (производится генераторами и трансформаторами);
  • пульсирующий ток претерпевает изменения в величине, но при этом не изменяет своего направления.
Под влиянием электрического поля разного рода материалы способны проводить электроток. Именно данное свойство называется электропроводность , которая у каждого вещества индивидуальна.

Показатель электропроводности напрямую связан с содержанием в материале свободно движущихся зарядов, которые не имеют связи с кристаллической сеткой, молекулами или атомами.

Таким образом, по степени проводимости тока материалы делятся на следующие типы:

  • проводники;
  • диэлектрики;
  • полупроводники.
Самый большой показатель электрической проводности свойственен проводникам. Они представлены в виде металлов или электролитов. Внутри металлических проводников ток обуславливается движением свободных заряженных частиц, таким образом, электропроводимость металлов электронная. Электролитам же свойственна электропроводность ионная, обусловленная движением именно ионов.

Высокая способность к электропроводности трактуется в электронной теории. Так, электроны курсируют среди атомов по всему проводнику из-за их слабой валентной связи с ядрами. То есть, свободно движущиеся заряженные частицы внутри металла закрывают собой пустоты среди атомов и характеризуются хаотичностью передвижения. Если же в электрическое поле будет помещен проводник из металла, электроны примут порядок в своем передвижении, перейдя к полюсу с положительным зарядом. Именно за счет этого и создается электрический ток. Скорость распространения электрического поля в пространстве аналогична скорости света. Именно с данной скоростью электроток движется внутри проводника. Стоит отметить, что это не скорость движения непосредственно электронов (их скорость совсем мала и равняется максимум нескольким мм/сек), а скорость распространения электроэнергии по всему веществу.

При свободном передвижении зарядов внутри проводника они встречают на своем пути различные микрочастицы, с которыми происходит столкновение и некоторая энергия отдается им. Проводники, как известно, испытывают нагрев. Это происходит как раз из-за того, что преодолевая сопротивление, энергия электронов распространяется в качестве теплового выделения.

Такие «аварии» зарядов создают препятствие передвижению электронов, что именуется в физике сопротивлением. Небольшое сопротивление несильно нагревает проводник, а при высоком достигаются большие температуры. Последнее явление используется в нагревательных устройствах, а также в традиционных лампах накаливания. Измерение сопротивления происходит в Омах. Обозначается латинской буквой R.

Электропроводность – явление, которое отображает способность металла или электролита проводить электроток. Данная величина обратная величине электрического сопротивления.
Измеряется электропроводность Сименсами (См), а обозначается буквой G.

Поскольку атомы создают препятствие прохождению тока, показатель сопротивления у веществ различный. Для обозначения было введено понятие удельного сопротивления (Ом-м), которое как раз дает информацию о способностях проводимости веществ.

Современные проводящие материалы имеют форму тонких ленточек, проволок с конкретной величиной площади поперечного сечения и определенной длиной. Удельная электропроводность и удельное сопротивление измеряется в следующих единицах: См-м/мм.кв и Ом-мм.кв/м соответственно.

Таким образом,удельное электрической сопротивление и удельная электропроводность являются характеристиками проводящей способности того или иного материала, площадь сечения которого равняется 1 мм.кв., а длина 1 м. Температура для характеристики – 20 градусов по Цельсию.

Хорошими проводниками электрического тока среди металлов являются драгоценные металлы, а именно золото и серебро, а также медь, хром и алюминий. Стальные и железные проводники имеют более слабые характеристики. Стоит отметить, что металлы в чистом виде отличаются более лучшими электропроводными свойствами по сравнению со сплавами металлов. Для высокого сопротивления, если это необходимо, применяют вольфрамовые, нихромовые и константные проводники.

Имея знания о показателях удельного сопротивления или удельной проводимости очень просто вычислить сопротивление и электропроводность определенного проводника. При этом в расчетах должна использоваться длина и площадь поперечного сечения конкретного проводника.

Важно знать, что показатель электропроводности, а также сопротивление любого материала напрямую зависит от температурного режима. Это объясняется тем, что при изменении в температуре происходят и изменения в частоте и амплитуде колебаний атомов. Таким образом, при росте температуры параллельно возрастет и сопротивление потоку движущихся зарядов. А при снижении температуры, соответственно, снижается сопротивление, а электропроводность возрастает.

В некоторых материалах зависимость температуры от сопротивления выражена очень ярко, в некоторых более слабо.

Последние материалы раздела:

Чудеса Космоса: интересные факты о планетах Солнечной системы
Чудеса Космоса: интересные факты о планетах Солнечной системы

ПЛАНЕТЫ В древние времена люди знали только пять планет: Меркурий, Венера, Марс, Юпитер и Сатурн, только их можно увидеть невооруженным глазом....

Реферат: Школьный тур олимпиады по литературе Задания
Реферат: Школьный тур олимпиады по литературе Задания

Посвящается Я. П. Полонскому У широкой степной дороги, называемой большим шляхом, ночевала отара овец. Стерегли ее два пастуха. Один, старик лет...

Самые длинные романы в истории литературы Самое длинное литературное произведение в мире
Самые длинные романы в истории литературы Самое длинное литературное произведение в мире

Книга длинной в 1856 метровЗадаваясь вопросом, какая книга самая длинная, мы подразумеваем в первую очередь длину слова, а не физическую длину....