Определение показательной функции. Показательная функция, её свойства и график

1.Показательная функция – это функция вида у(х) =а х, зависящая от показателя степени х, при постоянном значении основания степени a , где а > 0, a ≠ 0, xϵR (R – множество действительных чисел).

Рассмотрим график функции, если основание не будет удовлетворять условию: а>0
a) a < 0
Если a < 0 – возможно возведение в целую степень или в рациональную степень с нечетным показателем.
а = -2

Если а = 0 – функция у = определена и имеет постоянное значение 0


в) а =1
Если а = 1 – функция у = определена и имеет постоянное значение 1



2. Рассмотрим подробнее показательную функцию:

0


Область определения функции (ООФ)

Область допустимых значений функции (ОДЗ)

3. Нули функции (у = 0)

4. Точки пересечения с осью ординат oy (x = 0)

5. Возрастания, убывания функции

Если , то функция f(x) возрастает
Если , то функция f(x) убывает
Функция y= , при 0 Функция у =, при a> 1 монотонно возрастает
Это следует из свойств монотонности степени с действительным показателем.

6. Чётность, нечётность функции

Функция у = не симметрична относительно оси 0у и относительно началу координат, следовательно не является ни чётной, ни нечётной. (Функция общего вида)

7. Функция у = экстремумов не имеет

8. Свойства степени с действительным показателем:

Пусть а > 0; a≠1
b> 0; b≠1

Тогда для xϵR; yϵR:


Свойства монотонности степени:

если , то
Например:




Если a> 0, , то .
Показательная функция непрерывна в любой точке ϵ R.

9. Относительное расположение фунцкции

Чем больше основание а, тем ближе к осям ох и оу

a > 1, a = 20




Если а0, то показательная функция принимает вид близкий к y = 0.
Если а1, то дальше от осей ох и оу и график принимает вид близкий к функции у = 1.

Пример 1.
Построить график у =

Концентрация внимания:

Определение. Функция вида называется показательной функцией .

Замечание. Исключение из числа значений основания a чисел 0; 1 и отрицательных значений a объясняется следующими обстоятельствами:

Само аналитическое выражение a x в указанных случаях сохраняет смысл и может встречаться в решении задач. Например, для выражения x y точка x = 1; y = 1 входит в область допустимых значений.

Построить графики функций: и .

График показательной функции
y = a x , a > 1 y = a x , 0< a < 1

Свойства показательной функции

Свойства показательной функции y = a x , a > 1 y = a x , 0< a < 1
  1. Область определения функции
2. Область значений функции
3.Промежутки сравнения с единицей при x > 0, a x > 1 при x > 0, 0< a x < 1
при x < 0, 0< a x < 1 при x < 0, a x > 1
4. Чётность, нечётность. Функция не является ни чётной, ни нечётной (функция общего вида).
5.Монотонность. монотонно возрастает на R монотонно убывает на R
6. Экстремумы. Показательная функция экстремумов не имеет.
7.Асимптота Ось O x является горизонтальной асимптотой.
8. При любых действительных значениях x и y ;

Когда заполняется таблица, то параллельно с заполнением решаются задания.

Задание № 1. (Для нахождения области определения функции).

Какие значения аргумента являются допустимыми для функций:

Задание № 2. (Для нахождения области значений функции).

На рисунке изображен график функции. Укажите область определения и область значений функции:

Задание № 3. (Для указания промежутков сравнения с единицей).

Каждую из следующих степеней сравните с единицей:

Задание № 4. (Для исследования функции на монотонность).

Сравнить по величине действительные числа m и n если:

Задание № 5. (Для исследования функции на монотонность).

Сделайте заключение относительно основания a , если:

y(x) = 10 x ; f(x) = 6 x ; z(x) - 4 x

Как располагаются графики показательных функций относительно друг друга при x > 0, x = 0, x < 0?

В одной координатной плоскости построены графики функций:

y(x) = (0,1) x ; f(x) = (0,5) x ; z(x) = (0,8) x .

Как располагаются графики показательных функций относительно друг друга при x > 0, x = 0, x < 0?

Число одна из важнейших постоянных в математике. По определению, оно равно пределу последовательности при неограниченном возрастании n . Обозначение e ввёл Леонард Эйлер в 1736 г. Он вычислил первые 23 знака этого числа в десятичной записи, а само число назвали в честь Непера «неперовым числом».

Число e играет особую роль в математическом анализе. Показательная функция с основанием e , называется экспонентой и обозначается y = e x .

Первые знаки числа e запомнить несложно: два, запятая, семь, год рождения Льва Толстого - два раза, сорок пять, девяносто, сорок пять.

Домашнее задание:

Колмогоров п. 35; № 445-447; 451; 453.

Повторить алгоритм построения графиков функций, содержащих переменную под знаком модуля.

ПОКАЗАТЕЛЬНАЯ И ЛОГАРИФМИЧЕСКАЯ ФУНКЦИИ VIII

§ 179 Основные свойства показательной функции

В этом параграфе мы изучим основные свойства показательной функции

у = а x (1)

Напомним, что под а в формуле (1) мы подразумеваем любое фиксированное положительное число, отличное от 1.

Свойство 1. Областью определения показательной функции является совокупность всех действительных чисел.

В самом деле, при положительном а выражение а x определено для любого действительного числа х .

Свойство 2 . Показательная функция принимает только положительные значения.

Действительно, если х > 0, то, как было доказано в § 176,

а x > 0.

Если же х <. 0, то

а x =

где - х уже больше нуля. Поэтому а - x > 0. Но тогда и

а x = > 0.

Наконец, при х = 0

а x = 1.

2-е свойство показательной функции имеет простое графическое истолкование. Оно заключается в том, что график этой функции (см. рис. 246 и 247) располагается целиком выше оси абсцисс.

Свойство 3 . Если а >1, то при х > 0 а x > 1, а при х < 0 а x < 1. Если же а < 1, то, наоборот, при х > 0 а x < 1, а при х < 0 а x > 1.

Это свойство показательной функции также допускает простую геометрическую интерпретацию. При а > 1 (рис. 246) кривые у = а x располагаются выше прямой у = 1 при х > 0 и ниже прямой у = 1 при х < 0.

Если же а < 1 (рис. 247), то, наоборот, кривые у = а x располагаются ниже прямой у = 1 при х > 0 и выше этой прямой при х < 0.

Приведем строгое доказательство 3-го свойства. Пусть а > 1 и х - произвольное положительное число. Покажем, что

а x > 1.

Если число х рационально (х = m / n ) , то а x = а m / n = n a m .

Поскольку а > 1, то и а m > 1, Но корень из числа, большего единицы, очевидно, также больше 1.

Если х иррационально, то существуют положительные рациональные числа х" и х" , которые служат десятичными приближениями числа x :

х" < х < х" .

Но тогда по определению степени с иррациональным показателем

а x" < а x < а x"" .

Как показано выше, число а x" больше единицы. Поэтому и число а x , большее, чем а x" , также должно быть больше 1,

Итак, мы показали, что при a >1 и произвольном положительном х

а x > 1.

Если бы число х было отрицательным, то мы имели бы

а x =

где число -х было бы уже положительным. Поэтому а - x > 1. Следовательно,

а x = < 1.

Таким образом, при а > 1 и произвольном отрицательном x

а x < 1.

Случай, когда 0 < а < 1, легко сводится к уже рассмотренному случаю. Учащимся предлагается убедиться в этом самостоятельно.

Свойство 4. Если х = 0, то независимо от а а x =1.

Это вытекает из определения нулевой степени; нулевая степень любого числа, отличного от нуля, равна 1. Графически это свойство выражается в том, что при любом а кривая у = а x (см. рис. 246 и 247) пересекает ось у в точке с ординатой 1.

Свойство 5. При а >1 показательная функция у = а x является монотонно возрастающей, а при а < 1 - монотонно убывающей.

Это свойство также допускает простую геометрическую интерпретацию.

При а > 1 (рис. 246) кривая у = а x с ростом х поднимается все выше и выше, а при а < 1 (рис. 247) - опускается все ниже и ниже.

Приведем строгое доказательство 5-гo свойства.

Пусть а > 1 и х 2 > х 1 . Покажем, что

а x 2 > а x 1

Поскольку х 2 > х 1 ., то х 2 = х 1 + d , где d -некоторое положительное число. Поэтому

а x 2 - а x 1 = а x 1 + d - а x 1 = а x 1 (а d - 1)

По 2-му свойству показательной функции а x 1 > 0. Так как d > 0, то по 3-му свойству показательной функции а d > 1. Оба множителя в произведении а x 1 (а d - 1) положительны, поэтому и само это произведение положительно. Значит, а x 2 - а x 1 > 0, или а x 2 > а x 1 , что и требовалось доказать.

Итак, при a > 1 функция у = а x является монотонно возрастающей. Аналогично доказывается, что при а < 1 функция у = а x является монотонно убывающей.

Следствие. Если две степени одного и того же положительного числа, отличного от 1, равны, то равны и их показатели.

Другими словами, если

а b = а c (а > 0 и а =/= 1),

b = с .

Действительно, если бы числа b и с были не равны, то в силу монотонности функции у = а x большему из них соответствовало бы при а >1 большее, а при а < 1 меньшее значение этой функции. Таким образом, было бы или а b > а c , или а b < а c . И то и другое противоречит условию а b = а c . Остается признать, что b = с .

Свойство 6. Если а > 1, то при неограниченном возрастании аргумента х (х -> ) значения функции у = а x также неограниченно растут (у -> ). При неограниченном убывании аргумента х (х -> -∞ ) значения этой функции стремятся к нулю, оставаясь при этом положительными (у ->0; у > 0).

Принимая во внимание доказанную выше монотонность функции у = а x , можно сказать, что в рассматриваемом случае функция у = а x монотонно возрастает от 0 до .

Если 0 < а < 1, то при неограниченном возрастании аргумента х (х -> ∞) значения функции у = а x стремятся к нулю, оставаясь при этом положительными (у ->0; у > 0). При неограниченном убывании аргумента х (х -> -∞ ) значения этой функции неограниченно растут (у -> ).

В силу монотонности функции у = а x можно сказать, что в этом случае функция у = а x монотонно убывает от до 0.

6-е свойство показательной функции наглядно отражено на рисунках 246 и 247. Строго доказывать его мы не будем.

Нам осталось лишь установить область изменения показательной функции у = а x (а > 0, а =/= 1).

Выше мы доказали, что функция у = а x принимает только положительные значения и либо монотонно возрастает от 0 до (при а > 1), либо монотонно убывает от до 0 (при 0 < а <. 1). Однако остался невыясненным следующий вопрос: не претерпевает ли функция у = а x при своем изменении каких-нибудь скачков? Любые ли положительные значения она принимает? Вопрос этот решается положительно. Ecли а > 0 и а =/= 1, то, каково бы ни было положительное число у 0 обязательно найдется х 0 , такое, что

а x 0 = у 0 .

(В силу монотонности функции у = а x указанное значение х 0 будет, конечно, единственным.)

Доказательство этого факта выходит за пределы нашей программы. Геометрическая интерпретация его состоит в том, что при любом положительном значении у 0 график функции у = а x обязательно пересечется с прямой у = у 0 и притом лишь в одной точке (рис. 248).

Отсюда можно сделать следующий вывод, который мы формулируем в виде свойства 7.

Свойство 7. Областью изменения показательной функции у = а x (а > 0, а =/= 1) служит множество всех положительных чисел.

Упражнения

1368. Найти области определения следующих функций:

1369. Какие из данных чисел больше 1 и какие меньше 1:

1370. На основании какого свойства показательной функции можно утверждать, что

а) (5 / 7) 2,6 > (5 / 7) 2,5 ; б) (4 / 3) 1,3 > (4 / 3) 1,2

1371. Какое число больше:

а) π - √3 или (1 / π ) - √3 ; в) (2 / 3) 1 + √6 или (2 / 3) √2 + √5 ;

б) ( π / 4) 1 + √3 или ( π / 4) 2 ; г) (√3 ) √2 - √5 или (√3 ) √3 - 2 ?

1372. Равносильны ли неравенства:

1373. Что можно сказать о числах х и у , если а x = а y , где а - заданное положительное число?

1374. 1) Можно ли среди всех значений функции у = 2 x выделить:

2) Можно ли среди всех значений функции у = 2 | x| выделить:

а) наибольшее значение; б) наименьшее значение?

Последние материалы раздела:

Ол взмш при мгу: отделение математики Заочные математические школы для школьников
Ол взмш при мгу: отделение математики Заочные математические школы для школьников

Для учащихся 6-х классов: · математика, русский язык (курс из 2-х предметов) - охватывает материал 5-6 классов. Для учащихся 7–11 классов...

Интересные факты о физике
Интересные факты о физике

Какая наука богата на интересные факты? Физика! 7 класс - это время, когда школьники начинают изучать её. Чтобы серьезный предмет не казался таким...

Дмитрий конюхов путешественник биография
Дмитрий конюхов путешественник биография

Личное дело Федор Филиппович Конюхов (64 года) родился на берегу Азовского моря в селе Чкалово Запорожской области Украины. Его родители были...