Обратной пропорциональностью называется функция. Учебно-методический материал по алгебре (8 класс) на тему: Функция обратной пропорциональности и её график

Сегодня мы рассмотрим, какие величины называются обратно пропорциональными, как выглядит график обратной пропорциональности и как все это может вам пригодится не только на уроках математики, но и вне школьных стен.

Такие разные пропорциональности

Пропорциональностью называют две величины, которые взаимно зависимы друг от друга.

Зависимость может быть прямой и обратной. Следовательно, отношения между величинами описывают прямая и обратная пропорциональность.

Прямая пропорциональность – это такая зависимость двух величин, при которой увеличение либо уменьшение одной из них ведет к увеличению либо уменьшению другой. Т.е. их отношение не изменяется.

Например, чем больше усилий вы прилагаете для подготовки к экзаменам, тем выше ваши оценки. Или чем больше вещей вы берете с собой в поход, тем тяжелее нести ваш рюкзак. Т.е. количество затраченных на подготовку к экзаменам усилий прямо пропорционально полученным оценкам. И количество запакованных в рюкзак вещей прямо пропорционально его весу.

Обратная пропорциональность – это функциональная зависимость, при которой уменьшение либо увеличение в несколько раз независимой величины (ее называют аргументом) вызывает пропорциональное (т.е. во столько же раз) увеличение либо уменьшение зависимой величины (ее называют функцией).

Проиллюстрируем простым примером. Вы хотите купить на рынке яблок. Яблоки на прилавке и количество денег в вашем кошельке находятся в обратной пропорциональности. Т.е. чем больше вы купите яблок, тем меньше денег у вас останется.

Функция и ее график

Функцию обратной пропорциональности можно описать как y = k/x . В котором x ≠ 0 и k ≠ 0.

Эта функция обладает следующими свойствами:

  1. Областью ее определения является множество всех действительных чисел, кроме x = 0. D (y ): (-∞; 0) U (0; +∞) .
  2. Областью значений являются все действительные числа, кроме y = 0. Е(у): (-∞; 0) U (0; +∞) .
  3. Не имеет наибольших и наименьших значений.
  4. Является нечетной и ее график симметричен относительно начала координат.
  5. Непериодическая.
  6. Ее график не пересекает оси координат.
  7. Не имеет нулей.
  8. Если k > 0 (т.е. аргумент возрастает), функция пропорционально убывает на каждом из своих промежутков. Если k < 0 (т.е. аргумент убывает), функция пропорционально возрастает на каждом из своих промежутков.
  9. При возрастании аргумента (k > 0) отрицательные значения функции находятся в промежутке (-∞; 0), а положительные – (0; +∞). При убывании аргумента (k < 0) отрицательные значения расположены на промежутке (0; +∞), положительные – (-∞; 0).

График функции обратной пропорциональности называется гиперболой. Изображается следующим образом:

Задачи на обратную пропорциональность

Чтобы стало понятнее, давайте разберем несколько задач. Они не слишком сложные, а их решение поможет вам наглядно представить, что такое обратная пропорциональность и как эти знания могут пригодиться в вашей обычной жизни.

Задача №1. Автомобиль движется со скоростью 60 км/ч. Чтобы доехать до места назначения, ему потребовалось 6 часов. Сколько времени ему потребуется, чтобы преодолеть такое же расстояние, если он будет двигаться со скоростью в 2 раза выше?

Можем начать с того, что запишем формулу, которая описывает отношения времени, расстояния и скорости: t = S/V. Согласитесь, она очень напоминает нам функцию обратной пропорциональности. И свидетельствует о том, что время, которое автомобиль проводит в пути, и скорость, с которой он движется, находятся в обратной пропорциональности.

Чтобы убедиться в этом, давайте найдем V 2 , которая по условию выше в 2 раза: V 2 = 60 * 2 = 120 км/ч. Затем рассчитаем расстояние по формуле S = V * t = 60 * 6 = 360 км. Теперь совсем несложно узнать время t 2 , которое требуется от нас по условию задачи: t 2 = 360/120 = 3 ч.

Как видите время в пути и скорость движения действительно обратно пропорциональны: со скоростью в 2 раза выше изначальной автомобиль потратит в 2 раза меньше времени на дорогу.

Решение этой задачи можно записать и в виде пропорции. Для чего сначала составим такую схему:

↓ 60 км/ч – 6 ч

↓120 км/ч – х ч

Стрелки обозначают обратно пропорциональную зависимость. А также подсказывают, что при составлении пропорции правую часть записи надо перевернуть: 60/120 = х/6. Откуда получаем х = 60 * 6/120 = 3 ч.

Задача №2. В мастерской трудятся 6 рабочих, которые с заданным объемом работы справляются за 4 часа. Если количество рабочих сократить в 2 раза, сколько времени потребуется оставшимся, чтобы выполнить тот же объем работы?

Запишем условия задачи в виде наглядной схемы:

↓ 6 рабочих – 4 ч

↓ 3 рабочих – х ч

Запишем это в виде пропорции: 6/3 = х/4. И получим х = 6 * 4/3 = 8 ч. Если рабочих станет в 2 раза меньше, оставшиеся затратят на выполнение всей работы в 2 раза больше времени.

Задача №3. В бассейн ведут две трубы. Через одну трубу вода поступает со скоростью 2 л/с и наполняет бассейн за 45 минут. Через другую трубу бассейн наполнится за 75 минут. С какой скоростью вода поступает в бассейн через эту трубу?

Для начала приведем все данные нам по условию задачи величины к одинаковым единицам измерения. Для этого выразим скорость наполнения бассейна в литрах в минуту: 2 л/с = 2 * 60 = 120 л/мин.

Поскольку из условия следует, что через вторую трубу бассейн заполняется медленнее, значит, и скорость поступления воды ниже. На лицо обратная пропорциональность. Неизвестную нам скорость выразим через х и составим такую схему:

↓ 120 л/мин – 45 мин

↓ х л/мин – 75 мин

А затем составим пропорцию: 120/х = 75/45, откуда х = 120 * 45/75 = 72 л/мин.

В задаче скорость наполнения бассейна выражена в литрах в секунду, приведем полученный нами ответ к такому же виду: 72/60 = 1,2 л/с.

Задача №4. В небольшой частной типографии печатают визитки. Сотрудник типографии работает со скоростью 42 визитки в час и трудится полный рабочий день – 8 часов. Если бы он работал быстрее и печатал 48 визиток за час, насколько раньше он смог бы уйти домой?

Идем проверенным путем и составляем по условию задачи схему, обозначив искомую величину как х:

↓ 42 визитки/ч – 8 ч

↓ 48 визитки/ч – х ч

Перед нами обратно пропорциональная зависимость: во сколько раз больше визиток в час напечатает сотрудник типографии, во столько же раз меньше времени ему потребуется на выполнение одной и той же работы. Зная это, составим пропорцию:

42/48 = х/8, х = 42 * 8/48 = 7ч.

Таким образом, справившись с работой за 7 часов, сотрудник типографии смогу бы уйти домой на час раньше.

Заключение

Нам кажется, что эти задачи на обратную пропорциональность действительно несложные. Надеемся, что теперь вы тоже считаете их такими. А главное, что знание об обратно пропорциональной зависимости величин действительно может оказаться для вас полезным еще не раз.

Не только на уроках математики и экзаменах. Но и тогда, когда вы соберетесь отправиться в путешествие, пойдете за покупками, решите немного подработать в каникулы и т.п.

Расскажите нам в комментариях, какие примеры обратной и прямой пропорциональной зависимости вы замечаете вокруг себя. Пускай это будет такая игра. Вот увидите, как это увлекательно. Не забудьте «расшарить» эту статью в социальных сетях, чтобы ваши друзья и одноклассники тоже смогли поиграть.

сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

Начальный уровень

Обратная зависимость. Начальный уровень.

Сейчас мы будем говорить об обратной зависимости, или другими словами - обратной пропорциональности, как о функции. Ты помнишь, что функция - это определенного рода зависимость? Если ты еще не читал тему , настоятельно рекомендую бросить все и прочитать, ведь нельзя изучать какую-либо конкретную функцию, не понимая, что это такое - функция.

Также очень полезно перед началом этой темы освоить две более простые функции: и . Там ты закрепишь понятие функции и научишься работать с коэффициентами и графиками.

Итак, ты вспомнил, что такое функция?
Повторим: функция - это правило, по которому каждому элементу одного множества (аргументу) ставится в соответствие некоторый (единственный! ) элемент другого множества (множества значений функции). То есть, если у тебя есть функция, это значит что каждому допустимому значению переменной (которую называют «аргументом») соответствует одно значение переменной (называемой «функцией»). Что значит «допустимому»? Если не можешь ответить на этот вопрос, еще раз вернись к теме « »! Все дело в понятии «область определения» : для некоторых функций не все аргументы одинаково полезны можно подставить в зависимость. Например, для функции отрицательные значения аргумента - недопустимы.

Функция, описывающая обратную зависимость

Это функция вида, где.

По-другому ее называют обратной пропорциональностью: увеличение аргумента вызывает пропорциональное уменьшение функции.
Давай определим область определения. Чему может быть равен? Или, по-другому, чему он не может быть равен?

Единственное число, на которое нельзя делить - это, поэтому:

или, что то же самое,

(такая запись означает, что может быть любым числом, кроме: знак « » обозначает множество действительных чисел, то есть всех возможных чисел; знаком « » обозначается исключение чего-нибудь из этого множества (аналог знака «минус»), и число в фигурных скобках означает просто число; получается, что из всех возможных чисел мы исключаем).

Множество значений функции, оказывается, точно такое же: ведь если, то на что бы мы его не делили, не получится:

Также возможны некоторые вариации формулы. Например, - это тоже функция, описывающая обратную зависимость.
Определи самостоятельно область определения и область значений этой функции. Должно получиться:

Давай посмотрим на такую функцию: . Является ли она обратной зависимостью?

На первый взгляд сложно сказать: ведь при увеличении увеличивается и знаменатель дроби, и числитель, так что непонятно, будет ли функция уменьшаться, и если да, то будет ли она уменьшаться пропорционально? Чтобы понять это, нам необходимо преобразовать выражение таким образом, чтобы в числителе не было переменной:

Действительно, мы получили обратную зависимость, но с оговоркой: .

Вот еще пример: .

Тут сложнее: ведь числитель и знаменатель теперь уж точно не сокращаются. Но все-же мы можем попробовать:

Ты понял, что я сделал? В числителе я добавил и вычел одно и то же число (), таким образом я вроде бы ничего не изменил, но теперь в числителе есть часть, равная знаменателю. Теперь я почленно поделю, то есть разобью эту дробь на сумму двух дробей:

(и правда, если привести то что у меня получилось к общему знаменателю, получится как-раз наша начальная дробь):

Ух ты! Снова получается обратная зависимость , только теперь к ней еще прибавляется число.
Этот метод нам очень пригодится позже при построении графиков.

А теперь самостоятельно приведи выражения к виду обратной зависимости:

Ответы:

2. Здесь нужно вспомнить, как квадратный трехчлен раскладывается на множители (это подробно описано в теме « »). Напомню, что для этого надо найти корни соответствующего квадратного уравнения: . Я найду их устно с помощью теоремы Виета: , . Как это делается? Ты можешь научиться этому, прочитав тему .
Итак, получаем: , следовательно:

3. Ты уже попробовал решить сам? В чем загвоздка? Наверняка в том, что в числителе у нас, а в знаменателе - просто. Это не беда. Нам нужно будет сократить на, поэтому в числителе следует вынести за скобки (чтобы в скобках получился уже без коэффициента):

График обратной зависимости

Как всегда, начнем с самого простого случая: .
Составим таблицу:

Нарисуем точки на координатной плоскости:

Теперь их надо плавно соединить, но как? Видно, что точки в правой и левой частях образуют будто бы несвязанные друг с другом кривые линии. Так оно и есть. График будет выглядеть так:

Этот график называется «гипербола» (есть что-то похожее на «параболу» в этом названии, правда?). Как и у параболы, у гиперболы две ветки, только они не связаны друг с другом. Каждая из них стремится своими концами приблизиться к осям и, но никогда их не достигает. Если посмотреть на эту же гиперболу издалека, получится такая картина:

Оно и понятно: так как, график не может пересекать ось. Но и, так что график никогда не коснется и оси.

Ну что же, теперь посмотрим, на что влияют коэффициенты. Рассмотрим такие функции:
:

Ух ты, какая красота!
Все графики построены разными цветами, чтобы легче было их друг от друга отличать.

Итак, на что обратим внимание в первую очередь? Например, на то, что если у функции перед дробью стоит минус, то график переворачивается, то есть симметрично отображается относительно оси.

Второе: чем больше число в знаменателе, тем дальше график «убегает» от начала координат.

А что, если функция выглядит сложнее, например, ?

В этом случае гипербола будет точно такой же, как обычная, только она немного сместится. Давай думать, куда?

Чему теперь не может быть равен? Правильно, . Значит, график никогда не достигнет прямой. А чему не может быть равен? Теперь. Значит, теперь график будет стремиться к прямой, но никогда ее не пересечет. Итак, теперь прямые и выполняют ту же роль, которую выполняют координатные оси для функции. Такие прямые называются асимптотами (линии, к которым график стремится, но не достигает их):

Более подробно о том, как строятся такие графики, мы выучим в теме .

А теперь попробуй решить несколько примеров для закрепления:

1. На рисунке изображен график функции. Определите.

2. На рисунке изображен график функции. Определите

3. На рисунке изображен график функции. Определите.

4. На рисунке изображен график функции. Определите.

5. На рисунке приведены графики функций и.

Выбери верное соотношение:

Ответы:

Обратная зависимость в жизни

Где же нам встречается такая функция на практике? Примеров множество. Самый распространенный - это движение: чем больше скорость, с которой мы движемся, тем меньшее время нам потребуется, чтобы преодолеть одно и то же расстояние. И правда, вспомним формулу скорости: , где - скорость, - время в пути, - расстояние (путь).

Отсюда можно выразить время:

Пример:

Человек едет на работу со средней скоростью км/ч, и доезжает за час. Сколько минут он потратит на эту же дорогу, если будет ехать со скоростью км/ч?

Решение:

Вообще, такие задачи ты уже решал в 5 и 6 классе. Ты составлял пропорцию:

То есть понятие обратной пропорциональности тебе уже точно знакомо. Вот и вспомнили. А теперь то же самое, только по-взрослому: через функцию.

Функция (то есть зависимость) времени в минутах от скорости:

Известно, что, тогда:

Нужно найти:

Теперь придумай сам несколько примеров из жизни, в которых присутствует обратная пропорциональность.
Придумал? Молодец, если да. Удачи!

ОБРАТНАЯ ЗАВИСИМОСТЬ. КОРОТКО О ГЛАВНОМ

1. Определение

Функция, описывающая обратную зависимость - это функция вида, где.

По-другому эту функцию называют обратной пропорциональностью, так как увеличение аргумента вызывает пропорциональное уменьшение функции.

или, что то же самое,

График обратной зависимости - гипербола.

2. Коэффициенты, и.

Отвечает за «пологость» и направление графика : чем больше этот коэффициент, тем дальше от начала координат располагается гипербола, и, следовательно, она менее круто «поворачивает» (см. рисунок). Знак коэффициента влияет на то, в каких четвертях расположен график:

  • если, то ветви гиперболы расположены в и четвертях;
  • если, то во и.

x=a - это вертикальная асимптота , то есть вертикаль, к которой стремится график.

Число отвечает за смещение графика функции вверх на величину, если , и смещение вниз, если .

Следовательно, - это горизонтальная асимптота .

Повторим теорию о функциях. Функция - это правило, по которому каждому элементу одного множества (аргументу) ставится в соответствие некоторый (единственный! ) элемент другого множества (множества значений функции). То есть, если есть функция\(y = f(x)\) , это значит, что каждому допустимому значению переменной \(x\) (которую называют «аргументом») соответствует одно значение переменной \(y\) (называемой «функцией»).

Функция, описывающая обратную зависимость

Это функция вида \(y = \frac{k}{x}\) ​​, где \(k \ne 0.\)

По-другому ее называют обратной пропорциональностью: увеличение аргумента вызывает пропорциональное уменьшение функции.
Определим область определения. Чему может быть равен \(x\) ? Или, по-другому, чему он не может быть равен?

Единственное число, на которое нельзя делить - это 0, поэтому \(x \ne 0.\) :

\(D(y) = (- \infty ;0) \cup (0; + \infty)\)

или, что то же самое:

\(D(y) = R\backslash \{ 0\} .\)

Такая запись означает, что \(x\) может быть любым числом, кроме 0: знак «R» обозначает множество действительных чисел, то есть всех возможных чисел; знаком «\» обозначается исключение чего-нибудь из этого множества (аналог знака «минус»), и число 0 в фигурных скобках означает просто число 0; получается, что из всех возможных чисел мы исключаем 0.

Множество значений функции, оказывается, точно такое же: ведь если \(k \ne 0.\) , то на что бы мы его не делили, 0 не получится:

\(E(y) = (- \infty ;0) \cup (0; + \infty)\)

или\(E(y) = R\backslash \{ 0\} .\)

Также возможны некоторые вариации формулы \(y = \frac{k}{x}\) ​​. Например, \(y = \frac{k}{{x + a}}\) ​​ - это тоже функция, описывающая обратную зависимость. Область определения и область значений этой функции следующие:

\(D(y) = (- \infty ; - a) \cup (- a; + \infty)\)

\(E(y) = (- \infty ;0) \cup (0; + \infty).\)

Рассмотрим пример , приведем выражение к виду обратной зависимости:

\(y = \frac{{x + 2}}{{x - 3}}.\)

\(y = \frac{{x + 2}}{{x - 3}} = \frac{{x - 3 + 3 + 2}}{{x - 3}} = \frac{{(x - 3) + 5}}{{x - 3}}.\)

Искусственно ввели значение 3 в числитель, а теперь почленно разделим числитель на знаменатель, получим:

\(y = \frac{{(x - 3) + 5}}{{x - 3}} = \frac{{x - 3}}{{x - 3}} + \frac{5}{{x - 3}} = 1 + \frac{5}{{x - 3}}.\)

Получили обратную зависимость плюс число 1.

График обратной зависимости

Начнем с простого случая \(y = \frac{1}{x}.\)

Составим таблицу значений:

Нарисуем точки на координатной плоскости:

Соединяем точки, график будет выглядеть так:

Этот график называется «гипербола» . Как и у параболы, у гиперболы две ветки, только они не связаны друг с другом. Каждая из них стремится своими концами приблизиться к осям Ox и Oy , но никогда их не достигает.

Отметим некоторые особенности функции:

  1. Если у функции перед дробью стоит минус, то график переворачивается, то есть симметрично отображается относительно оси Ox.
  2. Чем больше число в знаменателе, тем дальше график «убегает» от начала координат.

Обратная зависимость в жизни

Где же нам встречается такая функция на практике? Примеров множество. Самый распространенный - это движение: чем больше скорость, с которой мы движемся, тем меньшее время нам потребуется, чтобы преодолеть одно и то же расстояние. Вспомним формулу скорости:

\(v = \frac{S}{t},\)

где v - скорость, t - время в пути, S - расстояние (путь).

Отсюда можно выразить время: \(t = \frac{S}{v}.\)

Последние материалы раздела:

Чудеса Космоса: интересные факты о планетах Солнечной системы
Чудеса Космоса: интересные факты о планетах Солнечной системы

ПЛАНЕТЫ В древние времена люди знали только пять планет: Меркурий, Венера, Марс, Юпитер и Сатурн, только их можно увидеть невооруженным глазом....

Реферат: Школьный тур олимпиады по литературе Задания
Реферат: Школьный тур олимпиады по литературе Задания

Посвящается Я. П. Полонскому У широкой степной дороги, называемой большим шляхом, ночевала отара овец. Стерегли ее два пастуха. Один, старик лет...

Самые длинные романы в истории литературы Самое длинное литературное произведение в мире
Самые длинные романы в истории литературы Самое длинное литературное произведение в мире

Книга длинной в 1856 метровЗадаваясь вопросом, какая книга самая длинная, мы подразумеваем в первую очередь длину слова, а не физическую длину....