Объем проводимость частота плотность голография закон архимеда. Выталкивающая сила

Казалось бы, нет ничего проще, чем закон Архимеда. Но когда-то сам Архимед здорово поломал голову над его открытием. Как это было?

С открытием основного закона гидростатики связана интересная история.

Интересные факты и легенды из жизни и смерти Архимеда

Помимо такого гигантского прорыва, как открытие собственно закона Архимеда, ученый имеет еще целый список заслуг и достижений. Вообще, он был гением, трудившимся в областях механики, астрономии, математики. Им написаны такие труды, как трактат «о плавающих телах», «о шаре и цилиндре», «о спиралях», «о коноидах и сфероидах» и даже «о песчинках». В последнем труде была предпринята попытка измерить количество песчинок, необходимых для того, чтобы заполнить Вселенную.

Роль Архимеда в осаде Сиракуз

В 212 году до нашей эры Сиракузы были осаждены римлянами. 75-летний Архимед сконструировал мощные катапульты и легкие метательные машины ближнего действия, а также так называемые "когти Архимеда". С их помощью можно было буквально переворачивать вражеские корабли. Столкнувшись со столь мощным и технологичным сопротивлением, римляне не смогли взять город штурмом и вынуждены были начать осаду. По другой легенде Архимед при помощи зеркал сумел поджечь римский флот, фокусируя солнечные лучи на кораблях. Правдивость данной легенды представляется сомнительной, т.к. ни у одного из историков того времени упоминаний об этом нет.

Смерть Архимеда

Согласно многим свидетельствам, Архимед был убит римлянами, когда те все-таки взяли Сиракузы. Вот одна из возможных версий гибели великого инженера.

На крыльце своего дома ученый размышлял над схемами, которые чертил рукой прямо на песке. Проходящий мимо солдат наступил на рисунок, а Архимед, погруженный в раздумья, закричал: «Прочь от моих чертежей». В ответ на это спешивший куда-то солдат просто пронзил старика мечом.

Ну а теперь о наболевшем: о законе и силе Архимеда...

Как был открыт закон Архимеда и происхождение знаменитой "Эврика!"

Античность. Третий век до нашей эры. Сицилия, на которой еще и подавно нет мафии, но есть древние греки.

Изобретатель, инженер и ученый-теоретик из Сиракуз (греческая колония на Сицилии) Архимед служил у царя Гиерона второго. Однажды ювелиры изготовили для царя золотую корону. Царь, как человек подозрительный, вызвал ученого к себе и поручил узнать, не содержит ли корона примесей серебра. Тут нужно сказать, что в то далекое время никто не решал подобных вопросов и случай был беспрецедентным.

Архимед долго размышлял, ничего не придумал и однажды решил сходить в баню. Там, садясь в тазик с водой, ученый и нашел решение вопроса. Архимед обратил внимание на совершенно очевидную вещь: тело, погружаясь в воду, вытесняет объем воды, равный собственному объему тела. Именно тогда, даже не потрудившийся одеться, Архимед выскочил из бани и кричал свое знаменитое «эврика», что означает «нашел». Явившись к царю, Архимед попросил выдать ему слитки серебра и золота, равные по массе короне. Измеряя и сравнивая объем воды, вытясняемой короной и слитками, Архимед обнаружил, что корона изготовлена не из чистого золота, а имеет примеси серебра. Это и есть история открытия закона Архимеда.

Суть закона Архимеда

Если Вы спрашиваете себя, как понять закон Архимеда, мы ответим. Просто сесть, подумать, и понимание придет. Собственно, этот закон гласит:

На тело, погруженное в газ или жидкость действует выталкивающая сила, равная весу жидкости (газа) в объеме погруженной части тела. Эта сила называется силой Архимеда.

Как видим, сила Архимеда действует не только на тела, погруженные в воду, но и на тела в атмосфере. Сила, которая заставляет воздушный шар подниматься вверх – та же сила Архимеда. Высчитывается Архимедова сила по формуле:

Здесь первый член - плотность жидкости (газа), второй - ускорение свободного падения, третий - объем тела. Если сила тяжести равна силе Архимеда, тело плавает, если больше – тонет, а если меньше – всплывает до тех пор, пока не начнет плавать.

В данной статье мы рассмотрели закон Архимеда для чайников. Если Вы хотите узнать, как как решать задачи, где есть закон Архимеда, обращайтесь к . Лучшие авторы с удовольствием поделятся знаниями и разложат решение самой сложной задачи «по полочкам».

Существование гидростатического давления приводит к тому, что на любое тело, находящееся в жидкости или газе, действует выталкивающая сила. Впервые значение этой силы в жидкостях определил на опыте Архимед. Закон Архимеда формулируется так: на тело, погруженное в жидкость или газ, действует выталкивающая сила, равная весу того количества жидкости или газа, которое вытеснено погруженной частью тела.

Рассмотрим теоретический вывод закона Архимеда. В сосуд налита жидкость и погружено тело, имеющее форму куба. Ребро куба равно l. Верхняя грань куба находится от поверхности жидкости на глубине h, а нижняя - на глубине h+l. На все грани куба жидкость оказывает давление. При этом силы давления, действующие на боковые грани куба, взаимно компенсируются. На верхнюю грань куба действует направленная вниз сила давления F 1 , модуль которой

F1=r ж ghS (5.6)

где r ж - плотность жидкости; S - площадь грани куба. На нижнюю грань куба действует направленная вверх сила давления F 2 , модуль которой

F 2 =r ж g(h+l)S. (5.7)

Так как h 1 2 , т.е. равнодействующая этих двух сил направлена вертикально вверх и представляет собой выталкивающую (архимедову ) силу:

F A =F 2 -F 1 (5.8)

Подставив (5.6) и (5.7) в (5.8), найдем, что модуль архимедовой силы

F a =r ж g l S=r ж gV=P ж (5.9)

где V - объем куба (т. е. объем жидкости, вытесненной погруженным телом); P ж - вес вытесненной жидкости. Следовательно, выталкивающая сила по модулю равна весу жидкости, вытесненной погруженной частью тела.

Архимедова сила F A приложена к телу в центре масс вытесненной телом жидкости и направлена против силы тяжести, действующей на это тело. (Необходимо помнить, что закон Архимеда справедлив только при наличии тяжести. В условиях невесомости он не выполняется.)

Условие плавания тел

Поведение тела, находящегося в жидкости или газе, зависит от соотношения между модулями силы тяжести F т и архимедовой силы F A , которые действуют на это тело. Возможны следующие три случая:

  1. F т >F A - тело тонет;
  2. F т =F A - тело плавает в жидкости или газе;
  3. F т A - тело всплывает до тех пор, пока не начнет плавать.

Проверка справедливости закона Архимеда для газов

Под колокол вакуумного насоса помещают равноплечие весы, на которые подвешены пустотелый стеклянный шар большого объема и гиря, уравновешивающая вес этого шара в воздухе. Если откачать из-под колокола воздух, то равновесие нарушится и коромысло весов, на котором подвешен шар, опустится вниз. Объясним это явление.

Как отмечалось, вес Р" ш шара в воздухе был уравновешен весом Р" г гири в воздухе, т. е. Р" ш = Р" г. Но если справедлив закон Архимеда, то и на шар, и на гирю в воздухе действуют выталкивающие силы. Поэтому вес шара в воздухе равен Р" ш = Р ш -F ш, а вес гири в воздухе Р" г = Р г -F г, где Р г и Р ш - истинные веса гири и шара, т. е. их веса в пустоте, a F г и F ш - архимедовы выталкивающие силы, действующие соответственно на гирю и шар.

Согласно (5.9), F ш =r в gV ш и F г =r в gV г, где r в - плотность воздуха, V ш - объем шара, V г - объем гири. Так как V ш >>V г, то выталкивающая сила F ш, действующая на шар, значительно больше выталкивающей силы V г, действующей на гирю. Поэтому наблюдаемое в воздухе равновесие шара и гири не означает одинаковости их весов в пустоте. На самом деле истинный вес шара P ш больше истинного веса гири P г. Это сразу обнаруживается, когда из-под колокола насоса откачивают воздух. Весы выходят из равновесия, шар опускается вниз. Таким образом, данный опыт наглядно показывает справедливость закона Архимеда и для газов.

На использовании действия архимедовой силы в газах основано воздухоплавание - полеты дирижаблей, аэростатов и т. п.

В предыдущем параграфе мы назвали две формулы, при помощи которых силу Архимеда можно измерить. Теперь выведем формулу, при помощи которой силу Архимеда можно вычислить.

Закон Архимеда для жидкости выражается формулой (см. § 3-е):

Примем, что вес вытесненной жидкости равен действующей силе тяжести:

Wж = Fтяж = mжg

Масса вытесненной жидкости может быть найдена из формулы плотности:

r = m/V Ю mж = rжVж

Подставляя формулы друг в друга, получим равенство:

Fарх = Wж = Fтяж = mж g = rжVж g

Выпишем начало и конец этого равенства:

Fарх = rж gVж

Вспомним, что закон Архимеда справедлив для жидкостей и газов. Поэтому вместо обозначения «rж» более правильно использовать «rж/г». Также заметим, что объём жидкости, вытесненной телом, в точности равен объёму погруженной части тела: Vж = Vпчт. С учётом этих уточнений получим:

Итак, мы вывели частный случай закона Архимеда – формулу, выражающую способ вычисления силы Архимеда. Вы спросите: почему же эта формула – «частный случай», то есть менее общая?

Поясним примером. Вообразим, что мы проводим опыты в космическом корабле. Согласно формуле Fарх = Wж, архимедова сила равна нулю (так как вес жидкости равен нулю), согласно же формуле Fарх = rж/г gVпчт архимедова сила нулю не равна, так как ни одна из величин (r, g, V) в невесомости в ноль не обращается. Перейдя от воображаемых опытов к настоящим, мы убедимся, что справедлива именно общая формула.

Продолжим наши рассуждения и выведем ещё один частный случай закона Архимеда. Посмотрите на рисунок. Поскольку бревно находится в покое, следовательно, на него действуют уравновешенные силы – сила тяжести и сила Архимеда. Выразим это равенством:

Fарх = Fтяж

Или, подробнее:

rж gVпчт = mт g

Разделим левую и правую части равенства на коэффициент «g»:

rж Vпчт = mт

Вспомнив, что m = rV, получим равенство:

rж Vпчт = rт Vт

Преобразуем это равенство в пропорцию:

В левой части этой пропорции стоит дробь, показывающая долю, которую составляет объём погруженной части тела от объёма всего тела. Поэтому всю дробь называют погруженной долей тела:

Используя эту формулу, предскажем, чему должна быть равна погруженная доля бревна при его плавании в воде:

ПДТ (полена) » 500 кг/м 3: 1000 кг/м 3 = 0,5

Число 0,5 означает, что плавающее в воде бревно погружено наполовину. Так предсказывает теория, и это совпадает с практикой.

Итак, обе формулы в рамках являются менее общими, чем исходная, то есть имеют более узкие границы применимости . Почему же так произошло? Причина – применение нами формулы W = F тяж. Вспомним, что она не верна, если тело или его опора (подвес) движутся непрямолинейно (см. § 3-г). Упоминавшийся нами космический корабль именно так и движется – по круговой орбите вокруг Земли.

Разные предметы в жидкости ведут себя по-разному. Одни тонут, другие остаются на поверхности и плавают. Почему так происходит, объясняет закон Архимеда, открытый им при весьма необычных обстоятельствах и ставший основным законом гидростатики.

Как Архимед открыл свой закон

Легенда рассказывает нам, что Архимед открыл свой закон случайно. И этому открытию предшествовало следующее событие.

Царь Сиракуз Гиерон, правивший в 270-215 г.г. до н.э., заподозрил своего ювелира в том, что тот подмешал в заказанную ему золотую корону некоторое количество серебра. Чтобы развеять сомнения, он попросил Архимеда подтвердить или опровергнуть свои подозрения. Как истинного учёного, Архимеда увлекла эта задача. Для её решения нужно было определить вес короны. Ведь если в неё подмешано серебро, то её вес отличался бы от того, как если бы она была сделана из чистого золота. Удельный вес золота был известен. Но как вычислить объём короны? Ведь она имела неправильную геометрическую форму.

Согласно легенде, однажды Архимед, принимая ванну, размышлял над задачей, которую ему предстояло решить. Неожиданно учёный обратил внимание на то, что уровень воды в ванне стал выше после того, как он в неё погрузился. Когда он поднялся, уровень воды снизился. Архимед заметил, что своим телом вытесняет из ванны какое-то количество воды. И объём этой воды равнялся объёму его собственного тела. И тут он понял, как решить задачу с короной. Достаточно лишь погрузить её в сосуд, наполненный водой, и измерить объём вытесненной воды. Говорят, что он так обрадовался, что с криком «Эврика!» («Нашёл!») выскочил из ванны, даже не одевшись.

Так ли это было на самом деле или нет, значения не имеет. Архимед нашёл способ измерения объёма тел со сложной геометрической формой. Он впервые обратил внимание на свойства физических тел, которые называют плотностью, сопоставив их не друг с другом, а с весом воды. Но самое главное, им был открыт принцип плавучести .

Закон Архимеда

Итак, Архимед установил, что тело, погружённое в жидкость, вытесняет такой объём жидкости, который равен объёму самого тела. Е сли в жидкость погружается только часть тела, то оно вытеснит жидкость, объём которой будет равен объёму только той части, которая погружается.

А на само тело в жидкости действует сила, которая выталкивает его на поверхность. Её величина равна весу вытесненной им жидкости. Эту силу называют силой Архимеда .

Для жидкости закон Архимеда выглядит так: на тело, погружённое в жидкость, действует выталкивающая сила, направленная вверх, и равная весу вытесненной этим телом жидкости.

Величина силы Архимеда вычисляется следующим образом:

F A = ρ ɡ V ,

где ρ – плотность жидкости,

ɡ - ускорение свободного падения

V – объём погружённого в жидкость тела, или часть объёма тела, находящаяся ниже поверхности жидкости.

Сила Архимеда всегда приложена к центру тяжести объёма и направлена противоположно силе тяжести.

Следует сказать, что для выполнения этого закона должно соблюдаться одно условие: тело либо пересекается с границей жидкости, либо со всех сторон окружено этой жидкостью. Для тела, которое лежит на дне и герметично касается его, закон Архимеда не действует. Так, если мы положим на дно кубик, одна из граней которого будет плотно соприкасаться с дном, закон Архимеда для него мы не сможем применить.

Силу Архимеда называют также выталкивающей силой .

Эта сила по своей природе – сумма всех сил давления, действующих со стороны жидкости на поверхность тела, погружённого в неё. Выталкивающая сила возникает из-за разности гидростатического давления на разных уровнях жидкости.

Рассмотрим эту силу на примере тела, имеющего форму куба или параллелограмма.

P 2 – P 1 = ρ ɡ h

F A = F 2 – F 1 = ρɡhS = ρɡhV

Закон Архимеда действует и для газов. Но в этом случае выталкивающая сила называется подъёмной, а для её вычисления плотность жидкости в формуле заменяют на плотность газа.

Условие плавания тела

От соотношения значений силы тяжести и силы Архимеда зависит, будет ли тело плавать, тонуть или всплывать.

Если сила Архимеда и сила тяжести равны по величине, то тело в жидкости находится в состоянии равновесия, когда оно не всплывает и не погружается. Говорят, что оно плавает в жидкости. В этом случае F T = F A .

Если же сила тяжести больше силы Архимеда, тело погружается, или тонет.

Здесь F T ˃ F A .

А если значение силы тяжести меньше силы Архимеда, тело всплывает. Это происходит, когда F T ˂ F A .

Но всплывает оно не бесконечно, а лишь до того момента, пока сила тяжести и сила Архимеда не сравняются. После этого тело будет плавать.

Почему не все тела тонут

Если положить в воду два одинаковых по форме и размерам бруска, один из которых сделан из пластмассы, а другой из стали, то можно увидеть, что стальной брусок утонет, а пластмассовый останется на плаву. Так же будет, если взять любые другие предметы одинаковых размеров и формы, но разные по весу, например, пластмассовый и металлический шарики. Металлический шарик пойдёт ко дну, а пластмассовый будет плавать.

Но почему же ведут себя по-разному пластмассовый и стальной бруски? Ведь их объёмы одинаковы.

Да, объёмы одинаковы, но сами бруски сделаны из разных материалов, которые имеют разную плотность. И если плотность материала выше плотности воды, то брусок утонет, а если меньше – будет всплывать до тех пор, пока не окажется на поверхности воды. Это справедливо не только для воды, но и для любой другой жидкости.

Если обозначить плотность тела P t , а плотность среды, в которой оно находится, как P s , то если

P t ˃ Ps (плотность тела выше плотности жидкости) – тело тонет,

P t = Ps (плотность тела равна плотности жидкости) – тело плавает в жидкости,

P t ˂ Ps (плотность тела меньше плотности жидкости) – тело всплывает, пока не окажется на поверхности. После чего оно плавает.

Не выполняется закон Архимеда и в состоянии невесомости. В этом случае отсутствует гравитационное поле, а, значит, и ускорение свободного падения.

Свойство тела, погруженного в жидкость, оставаться в равновесии, не всплывая и не погружаясь дальше, называется плавучестью .

F A = ρ g V , {\displaystyle F_{A}=\rho gV,}

Описание

Выталкивающая или подъёмная сила по направлению противоположна силе тяжести , прикладывается к центру тяжести объёма, вытесняемого телом из жидкости или газа.

Обобщения

Некий аналог закона Архимеда справедлив также в любом поле сил, которое по-разному действуют на тело и на жидкость (газ), либо в неоднородном поле. Например, это относится к полю сил инерции (например, к полю центробежной силы) - на этом основано центрифугирование . Пример для поля немеханической природы: диамагнетик в вакууме вытесняется из области магнитного поля большей интенсивности в область с меньшей.

Вывод закона Архимеда для тела произвольной формы

Гидростатическое давление p {\displaystyle p} на глубине h {\displaystyle h} , оказываемое жидкостью плотностью ρ {\displaystyle \rho } на тело, есть p = ρ g h {\displaystyle p=\rho gh} . Пусть плотность жидкости ( ρ {\displaystyle \rho } ) и напряжённость гравитационного поля ( g {\displaystyle g} ) - постоянные величины, а h {\displaystyle h} - параметр. Возьмём тело произвольной формы, имеющее ненулевой объём. Введём правую ортонормированную систему координат O x y z {\displaystyle Oxyz} , причём выберем направление оси z совпадающим с направлением вектора g → {\displaystyle {\vec {g}}} . Ноль по оси z установим на поверхности жидкости. Выделим на поверхности тела элементарную площадку d S {\displaystyle dS} . На неё будет действовать сила давления жидкости направленная внутрь тела, d F → A = − p d S → {\displaystyle d{\vec {F}}_{A}=-pd{\vec {S}}} . Чтобы получить силу, которая будет действовать на тело, возьмём интеграл по поверхности:

F → A = − ∫ S p d S → = − ∫ S ρ g h d S → = − ρ g ∫ S h d S → = ∗ − ρ g ∫ V g r a d (h) d V = ∗ ∗ − ρ g ∫ V e → z d V = − ρ g e → z ∫ V d V = (ρ g V) (− e → z) . {\displaystyle {\vec {F}}_{A}=-\int \limits _{S}{p\,d{\vec {S}}}=-\int \limits _{S}{\rho gh\,d{\vec {S}}}=-\rho g\int \limits _{S}{h\,d{\vec {S}}}=^{*}-\rho g\int \limits _{V}{grad(h)\,dV}=^{**}-\rho g\int \limits _{V}{{\vec {e}}_{z}dV}=-\rho g{\vec {e}}_{z}\int \limits _{V}{dV}=(\rho gV)(-{\vec {e}}_{z}).}

При переходе от интеграла по поверхности к интегралу по объёму пользуемся обобщённой теоремой Остроградского-Гаусса .

∗ h (x , y , z) = z ; {\displaystyle {}^{*}h(x,y,z)=z;} ∗ ∗ g r a d (h) = ∇ h = e → z . {\displaystyle ^{**}grad(h)=\nabla h={\vec {e}}_{z}.}

Получаем, что модуль силы Архимеда равен ρ g V {\displaystyle \rho gV} , и направлена сила Архимеда в сторону, противоположную направлению вектора напряжённости гравитационного поля.

Замечание . Закон Архимеда можно также вывести из закона сохранения энергии. Работа силы, действующей со стороны погруженного тела на жидкость, приводит к изменению ее потенциальной энергии:

A = F Δ h = m ж g Δ h = Δ E p {\displaystyle \ A=F\Delta h=m_{\text{ж}}g\Delta h=\Delta E_{p}}

где m ж − {\displaystyle m_{\text{ж}}-} масса вытесненной части жидкости, Δ h {\displaystyle \Delta h} - перемещение ее центра масс. Отсюда модуль вытесняющей силы:

F = m ж g {\displaystyle \ F=m_{\text{ж}}g}

Последние материалы раздела:

Чудеса Космоса: интересные факты о планетах Солнечной системы
Чудеса Космоса: интересные факты о планетах Солнечной системы

ПЛАНЕТЫ В древние времена люди знали только пять планет: Меркурий, Венера, Марс, Юпитер и Сатурн, только их можно увидеть невооруженным глазом....

Реферат: Школьный тур олимпиады по литературе Задания
Реферат: Школьный тур олимпиады по литературе Задания

Посвящается Я. П. Полонскому У широкой степной дороги, называемой большим шляхом, ночевала отара овец. Стерегли ее два пастуха. Один, старик лет...

Самые длинные романы в истории литературы Самое длинное литературное произведение в мире
Самые длинные романы в истории литературы Самое длинное литературное произведение в мире

Книга длинной в 1856 метровЗадаваясь вопросом, какая книга самая длинная, мы подразумеваем в первую очередь длину слова, а не физическую длину....