Не является ни четной ни нечетной. График четной и нечетной функций

Функция - это одно из важнейших математических понятий. Функция - зависимость переменной у от переменной x , если каждому значению х соответствует единственное значение у . Переменную х называют независимой переменной или аргументом. Переменную у называют зависимой переменной. Все значения независимой переменной (переменной x ) образуют область определения функции. Все значения, которые принимает зависимая переменная (переменная y ), образуют область значений функции.

Графиком функции называют множество всех точек координатной плоскости, абсциссы которых равны значениям аргумента, а ординаты - соответствующим значениям функции, тоесть по оси абсцисс откладываются значения переменной x , а по оси ординат откладываются значения переменной y . Для построения графика функции необходимо знать свойства функции. Основные свойства функции будут рассмотрены далее!

Для построения графика функции советуем использовать нашу программу - Построение графиков функций онлайн. Если при изучении материала на данной странице у Вас возникнут вопросы, Вы всегда можете задать их на нашем форуме. Также на форуме Вам помогут решить задачи по математике, химии, геометрии, теории вероятности и многим другим предметам!

Основные свойства функций.

1) Область определения функции и область значений функции .

Область определения функции - это множество всех допустимых действительных значений аргумента x (переменной x ), при которых функция y = f(x) определена.
Область значений функции - это множество всех действительных значений y , которые принимает функция.

В элементарной математике изучаются функции только на множестве действительных чисел.

2) Нули функции .

Значения х , при которых y=0 , называется нулями функции . Это абсциссы точек пересечения графика функции с осью Ох.

3) Промежутки знакопостоянства функции .

Промежутки знакопостоянства функции – такие промежутки значений x , на которых значения функции y либо только положительные, либо только отрицательные, называются промежутками знакопостоянства функции.

4) Монотонность функции .

Возрастающая функция (в некотором промежутке) - функция, у которой большему значению аргумента из этого промежутка соответствует большее значение функции.

Убывающая функция (в некотором промежутке) - функция, у которой большему значению аргумента из этого промежутка соответствует меньшее значение функции.

5) Четность (нечетность) функции .

Четная функция - функция, у которой область определения симметрична относительно начала координат и для любого х f(-x) = f(x) . График четной функции симметричен относительно оси ординат.

Нечетная функция - функция, у которой область определения симметрична относительно начала координат и для любогох из области определения справедливо равенство f(-x) = - f(x ). График нечетной функции симметричен относительно начала координат.

Четная функция
1) Область определения симметрична относительно точки (0; 0), то есть если точка a принадлежит области определения, то точка -a также принадлежит области определения.
2) Для любого значения x f(-x)=f(x)
3) График четной функции симметричен относительно оси Оу.

Нечетная функция обладает следующими свойствами:
1) Область определения симметрична относительно точки (0; 0).
2) для любого значения x , принадлежащего области определения, выполняется равенство f(-x)=-f(x)
3) График нечетной функции симметричен относительно начала координат (0; 0).

Не всякая функция является четной или нечетной. Функции общего вида не являются ни четными, ни нечетными.

6) Ограниченная и неограниченная функции .

Функция называется ограниченной, если существует такое положительное число M, что |f(x)| ≤ M для всех значений x . Если такого числа не существует, то функция - неограниченная.

7) Периодическость функции .

Функция f(x) - периодическая, если существует такое отличное от нуля число T, что для любого x из области определения функции имеет место: f(x+T) = f(x). Такое наименьшее число называется периодом функции. Все тригонометрические функции являются периодическими. (Тригонометрические формулы).

Функция f называется периодической, если существует такое число, что при любом x из области определения выполняется равенство f(x)=f(x-T)=f(x+T) . T - это период функции.

Всякая периодическая функция имеет бесконечное множество периодов. На практике обычно рассматривают наименьший положительный период.

Значения периодической функции через промежуток, равный периоду, повторяются. Это используют при построении графиков.

Скрыть Показать

Способы задания функции

Пусть функция задается формулой: y=2x^{2}-3 . Назначая любые значения независимой переменной x , можно вычислить, пользуясь данной формулой соответствующие значения зависимой переменной y . Например, если x=-0,5 , то, пользуясь формулой, получаем, что соответствующее значение y равно y=2 \cdot (-0,5)^{2}-3=-2,5 .

Взяв любое значение, принимаемое аргументом x в формуле y=2x^{2}-3 , можно вычислить только одно значение функции, которое ему соответствует. Функцию можно представить в виде таблицы:

x −2 −1 0 1 2 3
y −4 −3 −2 −1 0 1

Пользуясь данной таблицей, можно разобрать, что для значения аргумента −1 будет соответствовать значение функции −3 ; а значению x=2 будет соответствовать y=0 и т.д. Также важно знать, что каждому значению аргумента в таблице соответствует лишь одно значение функции.

Еще функции возможно задать, используя графики. С помощью графика устанавливается какое значение функции соотносится с определенным значением x . Наиболее часто, это будет приближенное значение функции.

Четная и нечетная функция

Функция является четной функцией , когда f(-x)=f(x) для любого x из области определения. Такая функция будет симметрична относительно оси Oy .

Функция является нечетной функцией , когда f(-x)=-f(x) для любого x из области определения. Такая функция будет симметрична относительно начала координат O (0;0) .

Функция является ни четной , ни нечетной и называется функцией общего вида , когда она не обладает симметрией относительно оси или начала координат.

Исследуем на четность нижеприведенную функцию:

f(x)=3x^{3}-7x^{7}

D(f)=(-\infty ; +\infty) с симметричной областью определения относительно начала координат. f(-x)= 3 \cdot (-x)^{3}-7 \cdot (-x)^{7}= -3x^{3}+7x^{7}= -(3x^{3}-7x^{7})= -f(x) .

Значит, функция f(x)=3x^{3}-7x^{7} является нечетной.

Периодическая функция

Функция y=f(x) , в области определения которой для любого x выполняется равенство f(x+T)=f(x-T)=f(x) , называется периодической функцией с периодом T \neq 0 .

Повторение графика функции на любом отрезке оси абсцисс, который имеет длину T .

Промежутки, где функция положительная, то есть f(x) > 0 - отрезки оси абсцисс, которые отвечают точкам графика функции, лежащих выше оси абсцисс.

f(x) > 0 на (x_{1}; x_{2}) \cup (x_{3}; +\infty)

Промежутки, где функция отрицательная, то есть f(x) < 0 - отрезки оси абсцисс, которые отвечают точкам графика функции, лежащих ниже оси абсцисс.

f(x) < 0 на (-\infty; x_{1}) \cup (x_{2}; x_{3})

Ограниченность функции

Ограниченной снизу принято называть функцию y=f(x), x \in X тогда, когда существует такое число A , для которого выполняется неравенство f(x) \geq A для любого x \in X .

Пример ограниченной снизу функции: y=\sqrt{1+x^{2}} так как y=\sqrt{1+x^{2}} \geq 1 для любого x .

Ограниченной сверху называется функция y=f(x), x \in X тогда, когда существует такое число B , для которого выполняется неравенство f(x) \neq B для любого x \in X .

Пример ограниченной снизу функции: y=\sqrt{1-x^{2}}, x \in [-1;1] так как y=\sqrt{1+x^{2}} \neq 1 для любого x \in [-1;1] .

Ограниченной принято называть функцию y=f(x), x \in X тогда, когда существует такое число K > 0 , для которого выполняется неравенство \left | f(x) \right | \neq K для любого x \in X .

Пример ограниченной функции: y=\sin x ограничена на всей числовой оси, так как \left | \sin x \right | \neq 1 .

Возрастающая и убывающая функция

О функции, что возрастает на рассматриваемом промежутке принято говорить как о возрастающей функции тогда, когда большему значению x будет соответствовать большее значение функции y=f(x) . Отсюда выходит, что взяв из рассматриваемого промежутка два произвольных значения аргумента x_{1} и x_{2} , причем x_{1} > x_{2} , будет y(x_{1}) > y(x_{2}) .

Функция, что убывает на рассматриваемом промежутке, называется убывающей функцией тогда, когда большему значению x будет соответствовать меньшее значение функции y(x) . Отсюда выходит, что взяв из рассматриваемого промежутка два произвольных значений аргумента x_{1} и x_{2} , причем x_{1} > x_{2} , будет y(x_{1}) < y(x_{2}) .

Корнями функции принято называть точки, в которых функция F=y(x) пересекает ось абсцисс (они получаются в результате решения уравнения y(x)=0 ).

а) Если при x > 0 четная функция возрастает, то убывает она при x < 0

б) Когда при x > 0 четная функция убывает, то возрастает она при x < 0

в) Когда при x > 0 нечетная функция возрастает, то возрастает она и при x < 0

г) Когда нечетная функция будет убывать при x > 0 , то она будет убывать и при x < 0

Экстремумы функции

Точкой минимума функции y=f(x) принято называть такую точку x=x_{0} , у которой ее окрестность будет иметь остальные точки (кроме самой точки x=x_{0} ), и для них тогда будет выполняться неравенство f(x) > f(x_{0}) . y_{min} - обозначение функции в точке min.

Точкой максимума функции y=f(x) принято называть такую точку x=x_{0} , у которой ее окрестность будет иметь остальные точки (кроме самой точки x=x_{0} ), и для них тогда будет выполняется неравенство f(x) < f(x^{0}) . y_{max} - обозначение функции в точке max.

Необходимое условие

Согласно теореме Ферма: f"(x)=0 тогда, когда у функции f(x) , что дифференцируема в точке x_{0} , появится экстремум в этой точке.

Достаточное условие

  1. Когда у производной знак меняется с плюса на минус, то x_{0} будет точкой минимума;
  2. x_{0} - будет точкой максимума только тогда, когда у производной меняется знак с минуса на плюс при переходе через стационарную точку x_{0} .

Наибольшее и наименьшее значение функции на промежутке

Шаги вычислений:

  1. Ищется производная f"(x) ;
  2. Находятся стационарные и критические точки функции и выбирают принадлежащие отрезку ;
  3. Находятся значения функции f(x) в стационарных и критических точках и концах отрезка. Меньшее из полученных результатов будет являться наименьшим значением функции , а большее — наибольшим .
















Назад Вперёд

Внимание! Предварительный просмотр слайдов используется исключительно в ознакомительных целях и может не давать представления о всех возможностях презентации. Если вас заинтересовала данная работа, пожалуйста, загрузите полную версию.

Цели:

  • сформировать понятие чётности и нечётности функции, учить умению определять и использовать эти свойства при исследовании функций, построении графиков;
  • развивать творческую активность учащихся, логическое мышление, умение сравнивать, обобщать;
  • воспитывать трудолюбие, математическую культуру; развивать коммуникативные качества.

Оборудование: мультимедийная установка, интерактивная доска, раздаточный материал.

Формы работы: фронтальная и групповая с элементами поисково-исследовательской деятельности.

Информационные источники:

1.Алгебра9класс А.Г Мордкович. Учебник.
2.Алгебра 9класс А.Г Мордкович. Задачник.
3.Алгебра 9 класс. Задания для обучения и развития учащихся. Беленкова Е.Ю. Лебединцева Е.А

ХОД УРОКА

1. Организационный момент

Постановка целей и задач урока.

2. Проверка домашнего задания

№10.17 (Задачник 9кл. А.Г. Мордкович).

а) у = f (х ), f (х ) =

б) f (–2) = –3; f (0) = –1; f (5) = 69;

в) 1. D(f ) = [– 2; + ∞)
2. Е(f ) = [– 3; + ∞)
3. f (х ) = 0 при х ~ 0,4
4. f (х ) >0 при х > 0,4 ; f (х ) < 0 при – 2 < х < 0,4.
5. Функция возрастает при х € [– 2; + ∞)
6. Функция ограничена снизу.
7. у наим = – 3, у наиб не существует
8. Функция непрерывна.

(Вы использовали алгоритм исследования функции?) Слайд.

2. Таблицу, которую вам задавалась, проверим по слайду.

Заполните таблицу

Область определения

Нули функции

Промежутки знакопостоянства

Координаты точек пересечения графика с Оу

х = –5,
х = 2

х € (–5;3) U
U (2; ∞)

х € (–∞;–5) U
U (–3;2)

х ∞ –5,
х ≠ 2

х € (–5;3) U
U (2; ∞)

х € (–∞;–5) U
U (–3;2)

х ≠ –5,
х ≠ 2

х € (–∞; –5) U
U (2; ∞)

х € (–5; 2)

3. Актуализация знаний

– Даны функции.
– Указать область определения для каждой функции.
– Сравнить значение каждой функции для каждой пары значения аргумента: 1 и – 1; 2 и – 2.
– Для каких из данных функций в области определения выполняются равенства f (– х ) = f (х ), f (– х ) = – f (х )? (полученные данные занести в таблицу) Слайд

f (1) и f (– 1) f (2) и f (– 2) графики f (– х ) = –f (х ) f (– х ) = f (х )
1. f (х ) =
2. f (х ) = х 3
3. f (х ) = | х |
4. f (х ) = 2х – 3
5. f (х ) =

х ≠ 0

6. f (х )= х > –1

и не опред.

4. Новый материал

– Выполняя данную работу, ребята мы выявили ещё одно свойство функции, незнакомое вам, но не менее важное, чем остальные – это чётность и нечетность функции. Запишите тему урока: «Чётные и нечётные функции», наша задача – научиться определять чётность и нечётность функции, выяснить значимость этого свойства в исследовании функций и построении графиков.
Итак, найдём определения в учебнике и прочитаем (стр. 110). Слайд

Опр. 1 Функция у = f (х ), заданная на множестве Х называется чётной , если для любого значения х Є Х выполняется равенство f(–х)= f(х). Приведите примеры.

Опр. 2 Функция у = f (х) , заданная на множестве Х называется нечётной , если для любого значения х Є Х выполняется равенство f(–х)= –f(х). Приведите примеры.

Где мы встречались с терминами «четные» и «нечётные»?
Какие из данных функций будут чётными, как вы думаете? Почему? Какие нечётными? Почему?
Для любой функции вида у = х n , где n – целое число можно утверждать, что функция нечётна при n – нечётном и функция чётна при n – чётном.
– Функции вида у = и у = 2х – 3 не являются ни чётным, ни нечётными, т.к. не выполняются равенства f (– х ) = – f (х ), f (– х ) = f (х )

Изучение вопроса о том, является ли функция чётной или нечётной называют исследованием функции на чётность. Слайд

В определениях 1 и 2 шла речь о значениях функции при х и – х, тем самым предполагается, что функция определена и при значении х , и при – х .

Опр 3. Если числовое множество вместе с каждым своим элементом х содержит и противоположный элемент –х, то множество Х называют симметричным множеством.

Примеры:

(–2;2), [–5;5]; (∞;∞) – симметричные множества, а , [–5;4] – несимметричные.

– У чётных функций область определения – симметричное множество? У нечётных?
– Если же D(f ) – несимметричное множество, то функция какая?
– Таким образом, если функция у = f (х ) – чётная или нечётная, то её область определения D(f ) – симметричное множество. А верно ли обратное утверждение, если область определения функции симметричное множество, то она чётна, либо нечётна?
– Значит наличие симметричного множества области определения – это необходимое условие, но недостаточное.
– Так как же исследовать функцию на четность? Давайте попробуем составить алгоритм.

Слайд

Алгоритм исследования функции на чётность

1. Установить, симметрична ли область определения функции. Если нет, то функция не является ни чётной, ни нечётной. Если да, то перейти к шагу 2 алгоритма.

2. Составить выражение для f (– х ).

3. Сравнить f (– х ).и f (х ):

  • если f (– х ).= f (х ), то функция чётная;
  • если f (– х ).= – f (х ), то функция нечётная;
  • если f (– х ) ≠ f (х ) и f (– х ) ≠ –f (х ), то функция не является ни чётной, ни нечётной.

Примеры:

Исследовать на чётность функцию а) у = х 5 +; б) у = ; в) у = .

Решение.

а) h(х) = х 5 +,

1) D(h) = (–∞; 0) U (0; +∞), симметричное множество.

2) h (– х) = (–х) 5 + – х5 –= – (х 5 +),

3) h(– х) = – h (х) => функция h(х) = х 5 + нечётная.

б) у =,

у = f (х ), D(f) = (–∞; –9)? (–9; +∞), несимметричное множество, значит функция ни чётная, ни нечётная.

в) f (х ) = , у = f (х),

1) D(f ) = (–∞; 3] ≠ ; б) (∞; –2), (–4; 4]?

Вариант 2

1. Является ли симметричным заданное множество: а) [–2;2]; б) (∞; 0], (0; 7) ?


а); б) у = х· (5 – х 2). 2. Исследуйте на чётность функцию:

а) у = х 2 · (2х – х 3), б) у =

3. На рис. построен график у = f (х ), для всех х , удовлетворяющих условию х ? 0.
Постройте график функции у = f (х ), если у = f (х ) – чётная функция.

3. На рис. построен график у = f (х ), для всех х, удовлетворяющих условию х? 0.
Постройте график функции у = f (х ), если у = f (х ) – нечётная функция.

Взаимопроверка по слайду.

6. Задание на дом: №11.11, 11.21,11.22;

Доказательство геометрического смысла свойства чётности.

***(Задание варианта ЕГЭ).

1. Нечётная функция у = f(х) определена на всей числовой прямой. Для всякого неотрицательного значения переменной х значение этой функции совпадает со значением функции g(х ) = х (х + 1)(х + 3)(х – 7). Найдите значение функции h(х ) = при х = 3.

7. Подведение итогов

Функция называется четной (нечетной), если для любогои выполняется равенство

.

График четной функции симметричен относительно оси
.

График нечетной функции симметричен относительно начала координат.

Пример 6.2. Исследовать на четность или нечетность функции

1)
; 2)
; 3)
.

Решение .

1) Функция определена при
. Найдем
.

Т.е.
. Значит, данная функция является четной.

2) Функция определена при

Т.е.
. Таким образом, данная функция нечетная.

3) функция определена для , т.е. для

,
. Поэтому функция не является ни четной, ни нечетной. Назовем ее функцией общего вида.

3. Исследование функции на монотонность.

Функция
называется возрастающей (убывающей) на некотором интервале, если в этом интервале каждому большему значению аргумента соответствует большее (меньшее) значение функции.

Функции возрастающие (убывающие) на некотором интервале называются монотонными.

Если функция
дифференцируема на интервале
и имеет положительную (отрицательную) производную
, то функция
возрастает (убывает) на этом интервале.

Пример 6.3 . Найти интервалы монотонности функций

1)
; 3)
.

Решение .

1) Данная функция определена на всей числовой оси. Найдем производную .

Производная равна нулю, если
и
. Область определения – числовая ось, разбивается точками
,
на интервалы. Определим знак производной в каждом интервале.

В интервале
производная отрицательна, функция на этом интервале убывает.

В интервале
производная положительна, следовательно, функция на этом интервале возрастает.

2) Данная функция определена, если
или

.

Определяем знак квадратного трехчлена в каждом интервале.

Таким образом, область определения функции

Найдем производную
,
, если
, т.е.
, но
. Определим знак производной в интервалах
.

В интервале
производная отрицательна, следовательно, функция убывает на интервале
. В интервале
производная положительна, функция возрастает на интервале
.

4. Исследование функции на экстремум.

Точка
называется точкой максимума (минимума) функции
, если существует такая окрестность точки, что для всех
из этой окрестности выполняется неравенство

.

Точки максимума и минимума функции называются точками экстремума.

Если функция
в точкеимеет экстремум, то производная функции в этой точке равна нулю или не существует (необходимое условие существования экстремума).

Точки, в которых производная равна нулю или не существует называются критическими.

5. Достаточные условия существования экстремума.

Правило 1 . Если при переходе (слева направо) через критическую точку производная
меняет знак с «+» на «–», то в точкефункция
имеет максимум; если с «–» на «+», то минимум; если
не меняет знак, то экстремума нет.

Правило 2 . Пусть в точке
первая производная функции
равна нулю
, а вторая производная существует и отлична от нуля. Если
, то– точка максимума, если
, то– точка минимума функции.

Пример 6.4 . Исследовать на максимум и минимум функции:

1)
; 2)
; 3)
;

4)
.

Решение.

1) Функция определена и непрерывна на интервале
.

Найдем производную
и решим уравнение
, т.е.
.Отсюда
– критические точки.

Определим знак производной в интервалах ,
.

При переходе через точки
и
производная меняет знак с «–» на «+», поэтому по правилу 1
– точки минимума.

При переходе через точку
производная меняет знак с «+» на «–», поэтому
– точка максимума.

,
.

2) Функция определена и непрерывна в интервале
. Найдем производную
.

Решив уравнение
, найдем
и
– критические точки. Если знаменатель
, т.е.
, то производная не существует. Итак,
– третья критическая точка. Определим знак производной в интервалах.

Следовательно, функция имеет минимум в точке
, максимум в точках
и
.

3) Функция определена и непрерывна, если
, т.е. при
.

Найдем производную

.

Найдем критические точки:

Окрестности точек
не принадлежат области определения, поэтому они не являются т. экстремума. Итак, исследуем критические точки
и
.

4) Функция определена и непрерывна на интервале
. Используем правило 2. Найдем производную
.

Найдем критические точки:

Найдем вторую производную
и определим ее знак в точках

В точках
функция имеет минимум.

В точках
функция имеет максимум.

Преобразование графиков.

Словесное описание функции.

Графический способ.

Графический способ задания функции является наиболее наглядным и часто применяется в технике. В математическом анализе графический способ задания функций используется в качестве иллюстрации.

Графиком функции f называют множество всех точек (x;y) координатной плоскости, где y=f(x), а x «пробегает» всю область определения данной функции.

Подмножество координатной плоскости является графиком какой-либо функции, если оно имеет не более одной общей точки с любой прямой, параллельной оси Оу.

Пример. Является ли графиками функций фигуры, изображенные ниже?

Преимуществом графического задания является его наглядность. Сразу видно, как ведёт себя функция, где возрастает, где убывает. По графику сразу можно узнать некоторые важные характеристики функции.

Вообще, аналитический и графический способы задания функции идут рука об руку. Работа с формулой помогает построить график. А график частенько подсказывает решения, которые в формуле и не заметишь.

Почти любой ученик знает три способа задания функции, которые мы только что рассмотрели.

Попытаемся ответить на вопрос: "А существуют ли другие способы задания функции?"

Такой способ есть.

Функцию можно вполне однозначно задать словами.

Например, функцию у=2х можно задать следующим словесным описанием: каждому действительному значению аргумента х ставится в соответствие его удвоенное значение. Правило установлено, функция задана.

Более того, словесно можно задать функцию, которую формулой задать крайне затруднительно, а то и невозможно.

Например: каждому значению натурального аргумента х ставится в соответствие сумма цифр, из которых состоит значение х. Например, если х=3, то у=3. Если х=257, то у=2+5+7=14. И так далее. Формулой это записать проблематично. А вот табличку легко составить.

Способ словесного описания - достаточно редко используемый способ. Но иногда встречается.

Если есть закон однозначного соответствия между х и у - значит, есть функция. Какой закон, в какой форме он выражен - формулой, табличкой, графиком, словами – сути дела не меняет.

Рассмотрим функции, области определения которых симметричны относительно начала координат, т.е. для любого х из области определения число (-х ) также принадлежит области определения. Среди таких функций выделяют четные и нечетные .

Определение. Функция f называется четной , если для любого х из ее области определения

Пример. Рассмотрим функцию

Она является четной. Проверим это.



Для любого х выполнены равенства

Таким образом, у нас выполняются оба условия, значит функция четная. Ниже представлен график этой функции.

Определение. Функция f называется нечетной , если для любого х из ее области определения

Пример. Рассмотрим функцию

Она является нечетной. Проверим это.

Область определения вся числовая ось, а значит, она симметрична относительно точки (0;0).

Для любого х выполнены равенства

Таким образом, у нас выполняются оба условия, значит функция нечетная. Ниже представлен график этой функции.

Графики, изображенные на первом и третьем рисунках симметричны относительно оси ординат, а графики, изображенные на втором и четвертом рисункам симметричны относительно начала координат.

Какие из функций, графики которых изображены на рисунках являются четными, а какие нечетными?

Последние материалы раздела:

Чудеса Космоса: интересные факты о планетах Солнечной системы
Чудеса Космоса: интересные факты о планетах Солнечной системы

ПЛАНЕТЫ В древние времена люди знали только пять планет: Меркурий, Венера, Марс, Юпитер и Сатурн, только их можно увидеть невооруженным глазом....

Реферат: Школьный тур олимпиады по литературе Задания
Реферат: Школьный тур олимпиады по литературе Задания

Посвящается Я. П. Полонскому У широкой степной дороги, называемой большим шляхом, ночевала отара овец. Стерегли ее два пастуха. Один, старик лет...

Самые длинные романы в истории литературы Самое длинное литературное произведение в мире
Самые длинные романы в истории литературы Самое длинное литературное произведение в мире

Книга длинной в 1856 метровЗадаваясь вопросом, какая книга самая длинная, мы подразумеваем в первую очередь длину слова, а не физическую длину....