Краткая теория. Элементы земного магнетизма

Элементы земного магнетизма

Свойства магнитного поля Земли положены в основу принципа действия курсовых приборов, с помощью которых определяется и выдерживается направление полета.

Земля представляет собой естественный магнит, вокруг которого существует магнитное поле. Магнитные полюсы Земли не совпадают с географическими полюсами и располагаются не на поверхности Земли, а на некоторой глубине. Условно принимают, что Северный магнитный полюс, расположенный в северной части Канады, обладает южным магнетизмом, т.е. притягивает северный конец магнитной стрелки, а Южный магнитный полюс, расположенный в Антарктиде, обладает северным магнетизмом, т.е. притягивает к себе южный конец магнитной стрелки (рис. 4.1, а) . Положение магнитных полюсов очень медленно меняется.

Магнитные силовые линии выходят из Южного магнитного полюса и входят в Северный полюс, образуя замкнутые кривые. Свободно подвешенная магнитная стрелка устанавливается вдоль магнитных силовых линий. Элементами земного магнетизма являются: напряженность, наклонение и склонение .

Напряженность магнитного поля Земли ( ) – сила, с которой магнитное поле Земли действует в данной точке. Ее измеряют в эрстедах (э) и гаммах (γ = 10 -5 э). На экваторе напряженность магнитного поля Земли равна 0.34 э, на средних широтах 0.4 – 0.5 э, на магнитных полюсах 0.79 э.

а) б)


Рис. 4.1. Магнитное поле Земли:

а) магнитное поле Земли; б) элементы земного магнетизма

Вектор напряженности можно разложить на горизонтальную и вертикальную составляющие (рис. 4.1, б). Последние определяются по формулам: ; .

Вертикальная составляющая равна 0 на магнитном экваторе и максимальной величине на магнитных полюсах. Горизонтальная составляющая является той силой, которая устанавливает магнитную стрелку в направлении магнитных силовых линий. На магнитном экваторе она наибольшая, а на магнитных полюсах равна 0.

Магнитное наклонение () – угол, на который магнитная стрелка наклоняется относительно плоскости горизонта (рис. 4.1, б). На магнитном экваторе наклонение равно нулю, а на магнитных полюсах равно 90°. Для устранения наклона магнитной стрелки в авиационных компасах в Северном полушарии утяжеляют южный конец стрелки, а в Южном – северный или смещают точку подвески магнитной стрелки.

Магнитный меридиан (С м) – линия, вдоль которой устанавливается магнитная стрелка компаса под действием вектора напряженности магнитного поля Земли (рис. 4.2, а).

Магнитное склонение (Δ м) – угол, заключенный между северными направлениями истинного (географического) и магнитного меридианов в данной точке (рис. 4.2, б). Оно измеряется от 0 до 180° и отсчитывается от истинного меридиана к востоку (вправо) со знаком «плюс», а к западу (влево) – со знаком «минус».

Рис. 4.2. Магнитное склонение:

а) истинные и магнитные меридианы; б) магнитное склонение

Элементы земного магнетизма указываются на специальных магнитных картах, которые составляются по результатам магнитных съемок. Линии, соединяющие точки на земной поверхности с одинаковым магнитным склонением в определенную эпоху, называются изогонами . Изогоны наносятся на полетные и бортовые карты штрихованными линиями фиолетового цвета с учетом эпохи (года) измерения. Магнитное склонение имеет вековые, годовые, суточные и эпизодические изменения. Суточные и годовые изменения достигают в среднем 4 – 10", вековые 6 – 15°. Магнитные бури – внезапные изменения магнитного склонения, продолжительностью от нескольких часов до нескольких суток, вызванные солнечной активностью. Величина изменения магнитного склонения при этом достигает в умеренных широтах до 7°, а в полярных областях до 50°. Кроме изогон, на полетные и бортовые карты наносят магнитные аномалии. Магнитная аномалия – район с резкими и значительными изменениями всех элементов земного магнетизма. Наличие магнитных аномалий связано с залежами магнитных руд в недрах Земли. Наиболее мощные аномалии – Курская, Криворожская, Магнитогорская, Сарбайская и др. В районах аномалий есть точки, где магнитное склонение доходит до ± 180°. Аномалия влияет на работу магнитного компаса до высоты 1500 – 2000 м, а в районе Курской магнитной аномалии отмечены случаи, когда на высоте 3600 м наблюдалось отклонение магнитной стрелки компаса на 50° .

Девиация компаса и вариация. Девиация компаса вызывается действием на стрелку компаса магнитного поля, создаваемого стальными и железными деталями воздушного судна и электромагнитного поля, возникающего при работе электро – и радиооборудования ВС. В результате на магнитную стрелку компаса, кроме магнитного поля Земли, действует еще магнитное поле ВС.

Компасный меридиан (С к) – линия, вдоль которой устанавливается магнитная стрелка компаса, находящегося на ВС. Компасный и магнитный меридианы не совпадают.

Девиация компаса (Δ к) – угол, заключенный между северными направлениями магнитного и компасного меридианов (рис. 4.3, а). Она отсчитывается от магнитного меридиана к востоку (вправо) со знаком «плюс», а к западу (влево) – со знаком «минус».

Рис. 4.3. Девиация компаса и вариация:

а) девиация; б) вариация

Вариация (Δ) – угол, заключенный между северными направлениями истинного и компасного меридианов (рис. 4.3, б). Она отсчитывается от истинного меридиана к востоку (вправо) со знаком «плюс», а к западу (влево) – со знаком «минус». Вариация равна алгебраической сумме магнитного склонения и девиации компаса Δ = (±Δ м) + (±Δ к).

4.2. Виды курсов воздушного судна . Направление продольной оси ВС в плоскости горизонта характеризуется курсом, который является одним из основных навигационных элементов полета.

Курс воздушного судна – угол, в горизонтальной плоскости между направлением, принятым за начало отсчета, и проекцией на эту плоскость его продольной оси. Курс отсчитывается от направления, принятого за начало отсчета, до продольной оси ВС по ходу часовой стрелки от 0 до 360° (рис. 4.4). При использовании магнитного или гиромагнитного компаса за начальное направление отсчета принимают компасный или соответственно магнитный меридианы, а при использовании курсовых систем в режиме «ГПК» - условный (опорный) меридиан.


Рис. 4.4. Курсы воздушного судна

В зависимости от меридиана отсчета курсы могут быть: истинными, магнитными, компасными и условными.

Истинный курс (ИК) – угол, заключенный между северным направлением истинного меридиана, проходящего через ВС, и продольной осью ВС.

Магнитный курс (МК) – угол, заключенный между северным направлением магнитного меридиана, проходящего через ВС, и продольной осью ВС.

Компасный курс (КК) – угол, заключенный между северным направлением компасного меридиана, проходящего через ВС, и продольной осью ВС.

Условный курс (УК) – угол, заключенный между северным направлением условного (опорного) меридиана, проходящего через ВС, и продольной осью ВС.

При выполнении различных навигационных расчетов необходимо уметь переходить от одного курса к другому. Перевод курсов выполняют аналитически или графически. Из рис. 4.4 можно получить следующие аналитические зависимости:

МК = КК + (±Δ к); КК = МК – (±Δ к);

ИК = МК + (±Δ м); МК = ИК – (±Δ м);

ИК = КК + (±Δ к) + (±Δ м); КК = ИК – (±Δ м) – (±Δ к);

ИК = КК + (±Δ); КК = ИК – (±Δ).

При переводе курсов расчет магнитного склонения, девиации компаса и вариации выполняют по формулам:

Δ м = ИК – МК; Δ к = МК – КК; Δ = ИК – КК; Δ = (±Δ м) + (±Δ к).

Зависимость между условным, истинным и магнитным курсами определяется по формулам:

УК = ИК + (±Δ а); УК = МК + (±Δ м.у) .

При аналитическом переводе курсов необходимо руководствоваться следующими правилами:

1) если определяют магнитный или истинный курс по компасному курсу, то девиацию компаса, магнитное склонение и вариацию учитывают со своим знаком, т.е. алгебраически прибавляют (рис. 4.5);

2) если определяют магнитный или компасный курс по истинному курсу, то магнитное склонение, девиацию компаса и вариацию учитывают с обратным знаком, т.е. алгебраически вычитают.


Рис. 4.5. Правила перевода курсов

Для графического перевода курсов необходимо на листе бумаги провести северное направление меридиана того курса, который дан по условию задачи, от него отложить направление продольной оси ВС (значение заданного курса). Затем проводят остальные меридианы с учетом знака девиации и магнитного склонения. Значения искомых курсов определяют по схеме.

Пример. КК = 270°; Δ к = +5°; Δ м = –10° (рис. 4.6). Определить МК, ИК и вариацию.

Решение. МК = КК + (±Δ к) = 270° + (+5°) = 275°;

ИК = МК + (±Δ м) = 275° + (–10°) = 265°;

Δ = (±Δ м) + (±Δ к) = (–10°) + (+5°)= –5°.


Рис. 4.6. Графический перевод курсов

В практике аэронавигации приходится решать навигационные задачи, связанные с пеленгованием ориентиров. Пеленгование предусматривает определение курсовых углов ориентиров и пеленгов.

Курсовой угол ориентира (КУО) – угол, заключенный между продольной осью ВС и направлением на ориентир (рис. 4.7). Его отсчитывают от продольной оси ВС до направления на ориентир по ходу часовой стрелки от 0 до 360°.

Пеленг ориентира (ПО) – угол, заключенный между северным направлением меридиана, проходящего через ВС, и направлением на ориентир. Его отсчитывают от северного направления меридиана до направления на ориентир по ходу часовой стрелки от 0 до 360°. Пеленг ориентира может быть истинным (ИПО) и магнитным (МПО). Между пеленгом, курсом и курсовым углом ориентира существует следующая зависимость:

МПО = МК + КУО; КУО = МПО – МК; МК = МПО – КУО.


Рис. 4.7. Пеленг и курсовой угол ориентира

К основным характеристикам магнитного поля Земли, которые называют элементами земного магнетизма, относятся: напряженность (Н т), горизонтальная (Н) и вертикальная (Z) составляющие полного вектора напряженности Н т, магнитное склонение (D) и наклонение (I). Направление полного вектора напряженности определяет направление магнитных силовых линий, т. е. линий,в каждой точке которых вектор Н т, направлен по касательной к ним. Магнитным склонением называют угол между направлением географического меридиана и вектором Н (или направлением магнитного меридиана). В случае если магнитная стрелка отклоняется вправо от географического меридиана, то склонение называют восточным (или положительным), если влево, то склонение будет западным (отрицательным). Наклонение - ϶ᴛᴏ угол между горизонтальной плоскостью и полным вектором напряженности Н т. Величина I изменяется от –90 0 (Южное полушарие) до +90 0 (Северное полушарие).Τᴀᴋᴎᴍ ᴏϬᴩᴀᴈᴏᴍ, при направлении вектора Н т к поверхности Земли наклонение считается положительным, а от Земли вверх – отрицательным.

Элементы земного магнетизма измеряют в различных точках земного шара в процессе проведения магнитных съемок на суше, в морях, океанах, атмосфере. Первая магнитная съемка в России была проведена в 1586 ᴦ. в устье р.Печоры. К 1917 ᴦ. уже насчитывалось 8000 съемок; в период 1931 – 1936 гᴦ. была осуществлена генеральная магнитная съемка, в ходе которой проведено 12000 измерений. К 1950 ᴦ. число магнитометрических пунктов достигло 26000. Результаты измерений представляют в виде магнитных карт, которые отражают в изолиниях пространственное распределœение какого-либо одного элемента (Н, Z, D, I). Первую карту построил Галлей (1700 ᴦ.) Карты строятся для регионов и земного шара в целом на определœенный момент времени, в качестве такого момента выбрана середина года (1 июля) - ϶ᴛᴏ так называемая магнитная эпоха. Мировые карты строят Англия, Россия, США. Кроме карт составляется каталог магнитных данных.

Изолинии значений D называются изогонами. Карта изогон напоминает ход меридианов: изогоны выходят из одной области, сходятся в другой, почти противоположной. Отличие от меридианов, которые сходятся в районе полюсов, состоит в том, что в каждом полушарии имеются по две области сходимости изогон: одна - ϶ᴛᴏ магнитный полюс, другая – географический. Там значения D изменяются в пределах ±180 0 .

Линии равных значений I – изоклины. Карты изоклин представляют собой семейство кривых широтного направления. Нулевая изоклина (магнитный экватор) огибает земной шар вблизи экватора, удаляясь от него на 15 0 в районе Южной Америки.В районе южного магнитного полюса (Северное полушарие) I = +90 0 , в районе Северного магнитного полюса (Южное полушарие) I = -90 0 .

Линии равных значений Н и Z – изодины. Карты изодин (Z) повторяют карты изоклин: на магнитном экваторе Z = 0; на полюсах Z = Н т = 48-55 А/м. Значения горизонтальной составляющей Н т – Н изменяются от Н = 0 на полюсах до Н = 32 А/м на магнитном экваторе, где Н = Н т.

На картах изопор показывается скорость смещения какого-либо ЭЗМ. Период полного обращения МПЗ примерно 2 тыс. лет.

Первые представления о формах и размерах Земли появились в глубокой древности. Античные мыслители (Пифагор V в. до н.э., Аристотель III в. до н.э. и др.) высказывали мысль, что наша планета имеет шарообразную форму.

Земля несимметрична по отношению к экватору: южный полюс расположен ближе к экватору, чем северный. Земля является не двухосным, а трехосным эллипсоидом.

В настоящее время за фигуру Земли при расчетах принимается эллипсоид Красовского. По этим данным экваториальный радиус Земли равен 6 378,245 км, полярный радиус 6 356,863 км, полярное сжатие 1/298,25. Объем Земли составляет 1,083·10 12 км 3 , а масса 6·10 27 г. Ускорение силы тяжести на полюсе 983, на экваторе 978 см/с 2 . Площадь поверхности Земли около 510 млн. км 2 , из которых 70,8% -- Мировой океан и 29,2% суша. В распределении океанов и материков наблюдается асимметрия. В Северном полушарии это соотношение составляет 61 и 39%, в Южном 81 и 19%.

ВНУТРЕННЕЕ СТРОЕНИЕ. Особенности слоев Земли.

Земля, так же, как и многие другие планеты, имеет слоистое внутреннее строение. Наша планета состоит из трех основных слоев. Внутренний слой – это ядро, наружный – земная кора, а между ними размещена мантия.

Ядро представляет собой центральную часть Земли и расположено на глубине 3000-6000 км. Радиус ядра составляет 3500 км. По мнению ученых, ядро состоит из двух частей: внешней – вероятно, жидкой, и внутренней - твердой. Температура ядра составляет около 5000 градусов. Современные представления о ядре нашей планеты получены в ходе длительных исследований и анализа полученных данных. Так, доказано, что в ядре планеты содержание железа достигает 35%, что обусловливает его характерные сейсмические свойства. Внешняя часть ядра представлена вращающимися потоками никеля и железа, которые хорошо проводят электрический ток.

Происхождение магнитного поля Земли связано именно с этой частью ядра, так как глобальное магнитное поле создается электрическими токами, протекающими в жидком веществе внешнего ядра. Из-за очень высокой температуры внешнее ядро оказывает значительное влияние на соприкасающиеся с ним участки мантии. В некоторых местах возникают громадные тепломассопотоки, направленные к поверхности Земли. Внутреннее ядро Земли твердое, также имеет высокую температуру. Ученые полагают, что такое состояние внутренней части ядра обеспечивается очень высоким давлением в центре Земли, достигающим 3 млн. атмосфер. При увеличении расстояния от поверхности Земли повышается сжатие веществ, при этом многие из которых переходят в металлическое состояние.

Промежуточный слой – мантия – покрывает ядро. Мантия занимает около 80% объема нашей планеты, это самая большая часть Земли. Мантия расположена кверху от ядра, но не достигает поверхности Земли, снаружи она соприкасается с земной корой. В основном, вещество мантии находится в твердом состоянии, кроме верхнего вязкого слоя толщиной примерно 80 км. Это астеносфера, в переводе с греческого языка означает «слабый шар». По мнению ученых, вещество мантии непрерывно движется. При увеличении расстояния от земной коры в сторону ядра происходит переход вещества мантии в более плотное состояние.

Снаружи мантию покрывает земная кора – внешняя прочная оболочка. Ее толщина варьирует от нескольких километров под океанами до нескольких десятков километров в горных массивах. На долю земной коры приходится всего 0,5% общей массы нашей планеты. В состав коры входят оксиды кремния, железа, алюминия, щелочных металлов. Континентальная земная кора делится на три слоя: осадочный, гранитный и базальтовый. Океаническая земная кора состоит из осадочного и базальтового слоев.

Литосферу Земли формирует земная кора вместе с верхним слоем мантии. Литосфера слагается из тектонических литосферных плит, которые как будто «скользят» по астеносфере со скоростью от 20 до 75 мм в год. Двигающиеся друг относительно друга литосферные плиты различны по величине, а кинематику передвижения определяет тектоника плит.

ЗЕМНОЙ МАГНЕТИЗМ, ЕГО ЗНАЧЕНИЕ. ЭЛЕМЕНТЫ ЗЕМНОГО МАГНЕТИЗМА.

Земля представляет собой огромный магнит, имеющий северный NM и южный SM полюса. Причем магнитные полюса не только не совпадают с истинными или географическими, но и, как показывают наблюдения, их место с течением времени меняется.

Сила, с которой магнитное поле Земли действует на единицу магнитной массы, помещенную в данное поле, называется напряженностью магнитного поля и характеризуется вектором, направленным в любой точке земного магнитного поля по касательным к силовым линиям.

Силу земного магнетизма, действующую в любой точке, в общем случае можно разложить на две составляющие - горизонтальную и вертикальную.

Все элементы земного магнетизма с течением времени изменяются, поэтому карты приводят к определенному году и на них указывают годовые изменения элементов земного магнетизма.

Магнитное склонение в судовождении имеет наибольшее значение, так как его приходится принимать в расчет для определения истинных направлений в море при пользовании магнитным компасом.

Действие магнитного компаса основано на использовании магнитного поля Земли, и магнитная стрелка компаса, установленная на вертикальной оси, практически имеет одну степень свободы вокруг этой оси, и устанавливается по направлению горизонтальной составляющей земного магнетизма. Значение этой составляющей определяется выражением Н = Т cos 0 (см. рис. 12), и оно характеризует величину силы, которая удерживает стрелку компаса в плоскости магнитного меридиана.

ЭЛЕМЕНТЫ ЗЕМНОГО МАГНЕТИЗМА - проекции полного вектора напряженности земного магнитного поля Т (см. Поле Земли магнитное) па. оси координат и горизонтальную пл., а также углы склонения и наклонения. Проекция вектора Т на горизонтальную пл. называется горизонтальной составляющей (H) - на вертикальную ось - вертикальной составляющей (Z), на ось X (направленную по географическому меридиану на С) - сев. составляющей (X) и на ось Y (направленную по географической параллели на В) - вост. составляющей (Y). Углом склонения (D) называется угол между географическим меридианом и горизонтальной составляющей H (склонение считается положительным при отклонении H к В). Углом наклонения (I) называется угол между вектором Т и горизонтальной пл. (наклонение считается положительным при отклонении Т вниз) . Напряженность магнитного поля Земли (Т, Н, X, Y, Z) измеряется в эрстедах, миллиэрстедах и гаммах. Углы склонения и наклонения измеряются в градусах. В зависимости от используемой при расчетах системы координат для полной характеристики величины и построения в пространстве вектора Т достаточно 3-х Э. з. м.: в прямоугольной системе координат - X, Y, Z; в цилиндрической - H, Z, D; в сферической - Т, D, I.

Между Э. з. м. существуют следующие соотношения: X = H cos D; Y = H sin D; Z = H tg I; Т = H sec I = Z cosec I; H 2 = X 2 + Y 2 ; Т 2 = H 2 + Z 2 = X 2 + Y 2 + Z 2 ; Э. з. м. не остаются неизмененными во времени, а непрерывно меняют свои значения (см. Вариации магнитные). Для совр. эпохи на поверхности Земли H изменяется в пределах от 0,4 э на магнитном экваторе (в р-не Зондских островов) до нуля на магнитных полюсах. Z изменяется от 0,6 э в р-не магнитных полюсов до нуля на магнитном экваторе. Склонение изменяется в пределах от нуля на экваторе до ± 180° (на магнитных и географических полюсах). Наклонение - в пределах от нуля (на экваторе) до ±90° (на магнитных полюсах). В магниторазведке используются Т, Z и Н, поскольку напряженность аномального магнитного поля функционально связана с параметрами возмущающих тел. Иногда для характеристики положения аномальной горизонтальной составляющей измеряют также и D. См. Магниторазведка. Ю. П. Тафеев.

Геологический словарь: в 2-х томах. - М.: Недра . Под редакцией К. Н. Паффенгольца и др. . 1978 .

Смотреть что такое "ЭЛЕМЕНТЫ ЗЕМНОГО МАГНЕТИЗМА" в других словарях:

    КАРТА ЭЛЕМЕНТОВ ЗЕМНОГО МАГНЕТИЗМА - магнитная карта, справочная морская карта с на несенными на нее элементами земного магнетизма, составляется в меркаторской проекции с общей карто графич. основой для всех элементов. Карта предназначена для общего изучения состояния магнитного… … Морской энциклопедический справочник

    Геомагнетизм, магнитное поле Земли и околоземного космического пространства; раздел геофизики, изучающий распределение в пространстве и изменения во времени геомагнитного поля, а также связанные с ним геофизические процессы в Земле и… … Большая советская энциклопедия

    Магнитное поле Земли, существование которого обусловлено действием постоянных источников, расположенных внутри Земли (см. Гидромагнитное динамо) и создающих основной компонент поля (99%), а также переменных источников (электрических токов) в… … Энциклопедический словарь

    1976 года. Содержание … Википедия

    Прибор для измерения магнитного поля Земли в воздухе. Устанавливается на самолете или вертолете, может входить в состав аэрогеофизической станции. Чаще всего в воздухе измеряется полный вектор напряженности земного магнитного поля Т или его… … Геологическая энциклопедия

    Географические исследования Российской империи и развитие географической науки в России. Первые географические сведения о пространстве, составляющем в настоящее время Российскую империю, мы находим у иностранных писателей. Иностранцы были и… … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

    - (Magnetic charts) карты, на которых указывается величина склонения в виде линий равных склонений или другие элементы земного магнетизма. Самойлов К. И. Морской словарь. М. Л.: Государственное Военно морское Издательство НКВМФ Союза ССР, 1941 … Морской словарь

    Магн. поле Земли, существование к рого обусловлено действием пост. источников, расположенных внутри Земли (см. Гидромагнитное динамо) и создающих осн. компонент поля (99%), а также переменных источников (электрич. токов) в магнитосфере и… … Естествознание. Энциклопедический словарь

    Наука о магнитном поле Земли. Г. изучает структуру и изменения во времени магнитного поля Земли, происхождение этого поля и способы его измерений. Данные Г. используются во многих науках магниторазведке, геодезии, палеомагнетизме. Син.: магнетизм … Геологическая энциклопедия

    Линии, соединяющие на географической карте точки с одинаковыми значениями магнитного склонения. Положение их на магнитных картах относится к определенной эпохе. См. Элементы земного магнетизма. Геологический словарь: в 2 х томах. М.: Недра. Под… … Геологическая энциклопедия

Книги

  • Земной магнетизм , Тарасов Л.В.. В учебно-популярной форме рассказывается о земном магнетизме. Рассматриваются как геомагнитное поле на земной поверхности (элементы земного магнетизма, магнитныекарты, дрейф и инверсия…

ЗЕМНОЙ МАГНЕТИЗМ , отдел геофизики, изучающий магнитное поле земли. Пусть напряженность магнитного поля в данной точке изображается вектором F (фиг. 1). Вертикальная плоскость, содержащая этот вектор, называется плоскостью магнитного меридиана. Угол D, заключенный между плоскостями географического и магнитного меридианов, носит название склонения. Различают склонения восточное и западное. Принято отмечать восточные склонения знаком плюс, западные - знаком минус. Угол I, образованный вектором F с плоскостью горизонта, называется наклонением. Проекция Н вектора F на горизонтальную плоскость называется горизонтальной составляющей, а проекция Z на вертикальную прямую обозначается термином вертикальная составляющая.

Основными приборами для измерения элементов земного магнетизма являются в настоящее время магнитный теодолит и различные системы инклинаторов. Назначение магнитного теодолита - измерение горизонтальной составляющей магнитного поля и склонения. Горизонтально расположенный магнит, могущий вращаться около вертикальной оси, устанавливается под действием магнитного поля земли своей осью в плоскости магнитного меридиана. Если его вывести из этого положения равновесия и предоставить затем самому себе, то он начнет совершать колебания около плоскости магнитного меридиана с периодом Т, определяемым формулой:

где К - момент инерции колеблющейся системы (магнит и оправа) и М - магнитный момент магнита. Определив из специальных наблюдений величину К, можно по наблюденному периоду Т найти значение произведения МН. Затем помещают магнит, период колебания которого определен, на некотором расстоянии от другого, вспомогательного магнита, тоже имеющего возможность вращаться около вертикальной оси, и ориентируют первый магнит так, чтобы центр второго магнита оказался на продолжении магнитной оси первого. В таком случае на вспомогательный магнит будет кроме Н действовать и поле магнита М, которое м. б. найдено по формуле:

где В - расстояние между центрами обоих магнитов, а, b,... - некоторые постоянные. Магнит выйдет из плоскости магнитного меридиана и станет по направлению равнодействующей этих двух сил. Не изменяя относительного расположения частей установки, находят такое положение отклоняющего магнита, при котором названная равнодействующая будет перпендикулярна к нему (фиг. 2). Измеряя для этого случая угол отклонения v, можно из соотношения sin v = f/Hнайти значение отношения Из полученных значений МН и H/M определяют горизонтальную слагающую Н. В теории земного магнетизма имеет распространение единица, обозначаемая символом γ, равная 0,00001 гаусса. Магнитный теодолит можно применять в качестве деклинатора, прибора для измерения склонения. Совмещая визирную плоскость с направлением магнитной оси подвешенного на нити магнита, приводят ее в совпадение с плоскостью магнитного меридиана. Чтобы получить отсчет на круге, соответствующем наведению визирного приспособления на географический север, достаточно сделать наведение на какой-либо объект, истинный азимут которого известен. Разность отсчетов географического и магнитного меридианов и дает величину склонения.

Инклинатор - прибор для измерения I. Современная магнитометрия имеет два типа приборов для измерения наклонения - инклинаторы стрелочный и индукционный . Первый прибор имеет магнитную стрелку, вращающуюся около горизонтальной оси, помещенной в центре вертикального лимба. Плоскость движения стрелки совмещается с плоскостью магнитного меридиана; в таком случае в идеальных условиях магнитная ось стрелки в положении равновесия совпадет с направлением магнитного напряжения в данном пункте, и угол между направлением магнитной оси стрелки и горизонтальной линией даст величину I. В основу конструкции индукционного инклинатора (земного индуктора ) положено явление индукции в проводнике, движущемся в магнитном поле. Существенной особенностью прибора является катушка, вращаемая около одного из своих диаметров. При вращении такой катушки в магнитном поле земли в ней не появляется ЭДС лишь в том случае, когда ее ось вращения совпадает с направлением поля. Это положение оси, отмечаемое отсутствием тока в гальванометре, на который замкнута катушка, отсчитывается на вертикальном круге. Угол между направлением оси вращения катушки и горизонтом будет углом наклонения.

Упомянутые выше приборы являются в настоящее время наиболее распространенными. Следует упомянуть особо о магнитном теодолите Оглоблинского, определяющем значение H/M методом компенсации Н полем магнита, для которого определяется период колебания.

В последнее время начинают применяться т.н. электрические методы измерения Н, при которых отклонения производятся не с помощью отклоняющего магнита, а с помощью магнитного поля катушек. Для достижения той точности, которая требуется от магнитных измерений (0,2-0,02 % полного напряжения), рабочий ток сравнивается с током от нормальных элементов (компенсирование по методу потенциометра).

Измерения, сделанные в различных пунктах земной поверхности, показывают, что магнитное поле меняется от пункта к пункту. В этих изменениях можно заметить некоторые закономерности, характер которых лучше всего уясняется из рассмотрения т. н. магнитных карт (фиг. 3 и 4).

Если нанести на топографической основе линии, соединяющие точки равных значений какого-либо элемента земного магнетизма, то такая карта представит наглядную картину распределения этого элемента на местности. Соответственно различным элементам земного магнетизма имеются карты с различными системами изолиний. Эти изолинии носят специальные названия, смотря по тому, какой элемент они изображают. Так, линии, соединяющие точки равных склонений, носят название изогон (линия нулевых склонений получила название агонической линии), линии равных наклонений - изоклин и линии равных напряжений - изодинам . Различают изодинамы горизонтальной, вертикальной составляющей и т. д. Если построить такие карты для всей поверхности земного шара, то на них можно заметить следующие особенности. В экваториальных областях наблюдаются наибольшие значения горизонтальной силы (до 0,39 гаусса); по направлению к полюсам горизонтальная составляющая убывает. Противоположный характер изменений имеет место для вертикальной составляющей. Линия нулевых значений вертикальной составляющей называется магнитным экватором . Точки с нулевыми значениями горизонтальной силы называются магнитными полюсами земли. Они не совпадают с географическими и имеют координаты: северный магнитный полюс - 70,5° с. ш. и 96,0° з. д. (1922 г.), южный магнитный полюс - 71,2° ю. ш. и 151,0° в. д. (1912 г.). В магнитных полюсах земли пересекаются все изогоны.

Детальное исследование магнитного поля земли обнаруживает, что изолинии идут далеко не так плавно, как это дается общей картиной. На каждой такой кривой имеют место искривления, нарушающие плавный ход ее. В некоторых областях эти искривления достигают настолько крупных значений, что приходится данный участок выделить в магнитном отношении из общей картины. Такие районы носят название аномальных, и в них можно наблюдать значения магнитных элементов, во много раз превышающие нормальное поле. Исследование магнитных аномалий выяснило их тесную связь с геологической структурой верхних частей земной коры, гл. обр. в отношении содержания в них магнитных минералов, и вызвало к жизни особую отрасль магнитометрии, имеющую прикладное значение и ставящую своей задачей применение магнитометрии, измерений к горной разведке. Такие аномальные районы, имеющие уже в настоящее время большое промышленное значение, находятся на Урале, в Курском округе, в Кривом Роге, в Швеции, в Финляндии и в др. местах. Для исследования магнитного поля таких областей разработана специальная аппаратура (магнитометр Тиберга-Талена, локальвариометры и т. д.), позволяющая быстро получить нужные результаты измерений. Изучение магнитного поля земли в каком-либо одном пункте обнаруживает факт изменений этого поля с течением времени. Детальное исследование этих временных вариаций элементов земного магнетизма привело к установлению их связи с жизнью земного шара в целом. В вариациях находят свое отражение вращение земли около оси, движение земли по отношению к солнцу и еще целый ряд явлений космического порядка. Изучение вариаций ведется специальными магнитными обсерваториями, снабженными, кроме точных приборов для измерений элементов магнитного поля земли, еще специальными установками для непрерывной записи временных изменений магнитных элементов. Такие приборы носят название вариометров , или магнитографов , и служат обычно для записи вариаций D, Н и Z. Прибор для записи вариаций склонения (вариометр D , или унифиляр ) имеет магнит с прикрепленным к нему зеркальцем, свободно висящий на тонкой нити. Вариации склонения, заключающиеся в поворотах плоскости магнитного меридиана, заставляют подвешенный таким способом магнит поворачиваться. Брошенный из специального осветителя луч, отразившись от зеркальца магнита, дает перемещающееся световое пятно, которое оставляет след в виде кривой на светочувствительной бумаге, навернутой на вращающийся барабан или опускающейся вертикально. Линия, прочерченная лучом, отраженным от неподвижного зеркальца, и отметки времени позволяют по полученной магнитограмме найти изменение D для любого момента времени. Если закручивать нить, вращая верхнюю точку ее прикрепления, то магнит выйдет из плоскости магнитного меридиана; надлежащим закручиванием можно поставить его в положение, перпендикулярное первоначальному. В новом положении равновесия на магнит, с одной стороны, будет действовать Н, с другой - момент закрученной нити. Всякое изменение горизонтальной слагающей вызовет изменение положения равновесия магнита, и такой прибор будет отмечать вариации горизонтальной составляющей (вариометр Н , или бифиляр , если магнит подвешен на двух параллельных нитях). Запись этих вариаций ведется таким же образом, как и запись изменений склонения. Наконец, третий прибор, служащий для записи вариаций вертикальной составляющей (весы Ллойда , вариометр Z ), имеет магнит, колеблющийся, подобно коромыслу весов, около горизонтальной оси. Надлежащим перемещением центра тяжести с помощью передвижного грузика магнит этого прибора приводят в положение, близкое к горизонтальному, и устанавливают обычно так, чтобы плоскость движений магнита была направлена перпендикулярно плоскости магнитного меридиана. В таком случае положение равновесия магнита определяется действием Z и веса системы. Изменение первой величины вызовет некоторый наклон магнита, пропорциональный изменению вертикальной составляющей. Эти изменения наклона регистрируются, подобно предыдущему, фотографическим путем и дают материал для суждений о вариациях вертикальной составляющей.

Если подвергнуть кривые, записанные магнитографами (магнитограммы ), анализу, можно найти на них целый ряд особенностей, из которых прежде всего бросится в глаза отчетливо выраженный суточный ход. Положение максимумов и минимумов суточного хода, а равно и их значения изо дня в день меняются в небольших пределах, и поэтому для характеристики суточного хода составляются некоторые средние кривые за какой-либо интервал времени. На фиг. 5 даны кривые изменения D, H и Z для обсерватории в Слуцке за сентябрь 1927 г., на которых хорошо заметен суточный ход элементов.

Наиболее наглядным способом изображения вариаций является т. н. векторная диаграмма , представляющая движение конца вектора F с течением времени. Две проекции векторной диаграммы на плоскости yz и ху даны на фиг. 6. Из этой фиг. видно, как отражается на характере суточного хода время года: в зимние месяцы колебания магнитных элементов значительно меньше, чем в летние.

Кроме вариаций, обусловленных суточным ходом, на магнитограммах иногда замечаются резкие изменения, достигающие нередко весьма больших значений. Такие резкие изменения магнитных элементов сопровождаются рядом других явлений, как то: полярных сияний в арктических областях, появлением индуцированных токов в телеграфных и телефонных линиях, и т. д., и называются магнитными бурями . Между вариациями, обусловленными нормальным ходом, и вариациями, вызванными бурями, существует коренное различие. В то время как нормальные изменения протекают для каждого пункта наблюдений по местному времени, вариации, причиной которых являются бури, протекают одновременно для всего земного шара. Это обстоятельство указывает на различную природу вариаций обоих типов.

Стремление объяснить наблюдаемое наземной поверхности распределение элементов земного магнетизма привело Гаусса к построению математической теории геомагнетизма. Изучение элементов земного магнетизма со времени первых геомагнитных измерений обнаружило существование т. н. векового хода элементов, и дальнейшее развитие теории Гаусса заключало среди прочих задач и учет этих вековых вариаций. В результате работ Петерсона, Неймайера и других исследователей имеется теперь формула для потенциала, учитывающая и этот вековой ход.

Среди гипотез, предложенных для объяснений суточного и годового хода геомагнитных элементов, надо отметить гипотезу, предложенную Бальфур-Стюартом и развитую Шустером. По мысли этих исследователей, в высоких электропроводящих слоях атмосферы под термическим действием солнечных лучей возникают перемещения газовых масс. Магнитным полем земли в этих движущихся проводящих массах индуцируются электрические токи, магнитное поле которых и проявляется в виде суточных вариаций. Эта теория хорошо объясняет уменьшение амплитуды вариаций в зимние месяцы и выясняет превалирующую роль местного времени. Что касается магнитных бурь, то ближайшее исследование показало их тесную связь с деятельностью солнца. Выяснение этой связи привело к следующей общепризнанной в настоящее время теории магнитных возмущений. Солнце в моменты наиболее интенсивной своей деятельности выбрасывает потоки электрически заряженных частиц (например, электронов). Такой поток, попадая в верхние слои атмосферы, ионизирует ее и создает возможность протекания интенсивных электрических токов, магнитное поле которых и является теми пертурбациями, которые мы называем магнитными бурями. Такое объяснение природы магнитных бурь хорошо согласуется с результатами теории полярных сияний, развитой Штермером.

Последние материалы раздела:

Чудеса Космоса: интересные факты о планетах Солнечной системы
Чудеса Космоса: интересные факты о планетах Солнечной системы

ПЛАНЕТЫ В древние времена люди знали только пять планет: Меркурий, Венера, Марс, Юпитер и Сатурн, только их можно увидеть невооруженным глазом....

Реферат: Школьный тур олимпиады по литературе Задания
Реферат: Школьный тур олимпиады по литературе Задания

Посвящается Я. П. Полонскому У широкой степной дороги, называемой большим шляхом, ночевала отара овец. Стерегли ее два пастуха. Один, старик лет...

Самые длинные романы в истории литературы Самое длинное литературное произведение в мире
Самые длинные романы в истории литературы Самое длинное литературное произведение в мире

Книга длинной в 1856 метровЗадаваясь вопросом, какая книга самая длинная, мы подразумеваем в первую очередь длину слова, а не физическую длину....