Координаты и векторы. Исчерпывающий гид (2020)

На оси абсцисс и ординат называются координатами вектора . Координаты вектора общепринято указывать в виде (х, у) , а сам вектор как: =(х, у).

Формула определения координат вектора для двухмерных задач.

В случае двухмерной задачи вектор с известными координатами точек A(х 1 ;у 1) и B(x 2 ; y 2 ) можно вычислить:

= (x 2 - x 1 ; y 2 - y 1).

Формула определения координат вектора для пространственных задач.

В случае пространственной задачи вектор с известными координатами точек A(х 1 ;у 1 ; z 1 ) и B(x 2 ; y 2 ; z 2 ) можно вычислить применив формулу:

= (x 2 - x 1 ; y 2 - y 1 ; z 2 - z 1 ).

Координаты дают всеобъемлющую характеристику вектора, поскольку по координатам есть возможность построить и сам вектор. Зная координаты, легко вычислить и длину вектора . (Свойство 3, приведенное ниже).

Свойства координат вектора.

1. Любые равные векторы в единой системе координат имеют равные координаты .

2. Координаты коллинеарных векторов пропорциональны. При условии, что ни один из векторов не равен нулю.

3. Квадрат длины любого вектора равен сумме квадратов его координат .

4.При операции умножения вектора на действительное число каждая его координата умножается на это число.

5. При операции сложения векторов вычисляем сумму соответствующие координаты векторов .

6. Скалярное произведение двух векторов равняется сумме произведений их соответствующих координат.

  • 6.4. Некоторые приложения скалярного произведения
  • 11. Выражение скалярного произведения вектора через координаты сомножителей. Теорема.
  • 12. Длина вектора, длина отрезка, угол между векторами, условие перпендикулярности векторов.
  • 13. Векторное произведение векторов, его свойства. Площадь параллелограмма.
  • 14. Смешанное произведение векторов, его свойства. Условие компланарности вектора. Объем параллелепипеда. Объём пирамиды.
  • 15. Способы задания прямой на плоскости.
  • 16. Нормальное уравнение прямой на плоскости (вывод). Геометрический смысл коэффициентов.
  • 17. Уравнение прямой на плоскости в отрезках (вывод).
  • Приведение общего уравнения плоскости к уравнению плоскости в отрезках.
  • 18. Уравнение прямой на плоскости с угловым коэффициентом (вывод).
  • 19. Уравнение прямой на плоскости, проходящей через две точки (вывод).
  • 20. Угол между прямыми на плоскости (вывод).
  • 21. Расстояние от точки до прямой на плоскости (вывод).
  • 22. Условия параллельности и перпендикулярности прямых на плоскости (вывод).
  • 23. Уравнение плоскости. Нормальное уравнение плоскости (вывод). Геометрический смысл коэффициентов.
  • 24. Уравнение плоскости в отрезках (вывод).
  • 25. Уравнение плоскости, проходящей через три точки (вывод).
  • 26. Угол между плоскостями (вывод).
  • 27. Расстояние от точки до плоскости (вывод).
  • 28. Условия параллельности и перпендикулярности плоскостей (вывод).
  • 29. Уравнения прямой в r3. Уравнения прямой, проходящей через две фиксированные точки (вывод).
  • 30. Канонические уравнения прямой в пространстве (вывод).
  • Составление канонических уравнений прямой в пространстве.
  • Частные случаи канонических уравнений прямой в пространстве.
  • Канонические уравнения прямой проходящей через две заданные точки пространства.
  • Переход от канонических уравнений прямой в пространстве к другим видам уравнений прямой.
  • 31. Угол между прямыми (вывод).
  • 32. Расстояние от точки до прямой на плоскости (вывод).
  • Расстояние от точки до прямой на плоскости – теория, примеры, решения.
  • Первый способ нахождения расстояния от заданной точки до заданной прямой на плоскости.
  • Второй способ, позволяющий найти расстояние от заданной точки до заданной прямой на плоскости.
  • Решение задач на нахождение расстояния от заданной точки до заданной прямой на плоскости.
  • Расстояние от точки до прямой в пространстве – теория, примеры, решения.
  • Первый способ нахождения расстояния от точки до прямойaв пространстве.
  • Второй способ, позволяющий находить расстояние от точки до прямойaв пространстве.
  • 33. Условия параллельности и перпендикулярности прямых в пространстве.
  • 34. Взаимное расположение прямых в пространстве и прямой с плоскостью.
  • 35. Классическое уравнение эллипса (вывод) и его построение. Каноническое уравнение эллипса имеет вид, где– положительные действительные числа, причём.Как построить эллипс?
  • 36. Классическое уравнение гиперболы (вывод) и его построение. Асимптоты.
  • 37. Каноническое уравнение параболы (вывод) и построение.
  • 38. Функция. Основные определения. Графики основных элементарных функций.
  • 39. Числовые последовательности. Предел числовой последовательности.
  • 40. Бесконечно малые и бесконечно большие величины. Теорема о связи между ними, свойства.
  • 41. Теоремы о действиях над переменными величинами, имеющими конечные пределы.
  • 42. Число e.
  • Содержание
  • Способы определения
  • Свойства
  • История
  • Приближения
  • 43. Определение предела функции. Раскрытие неопределённостей.
  • 44. Замечательные пределы, их вывод. Эквивалентные бесконечно малые величины.
  • Содержание
  • Первый замечательный предел
  • Второй замечательный предел
  • 45. Односторонние пределы. Непрерывность и разрывы функции. Односторонние пределы
  • Левый и правый пределы функции
  • Точка разрыва первого рода
  • Точка разрыва второго рода
  • Точка устранимого разрыва
  • 46. Определение производной. Геометрический смысл, механический смысл производной. Уравнения касательной и нормали к кривой и точке.
  • 47. Теоремы о производной обратной, сложной функций.
  • 48. Производные простейших элементарных функций.
  • 49. Дифференцирование параметрических, неявных и степенно-показательных функций.
  • 21. Дифференцирование неявных и параметрически заданных функций
  • 21.1. Неявно заданная функция
  • 21.2. Функция, заданная параметрически
  • 50. Производные высших порядков. Формула Тейлора.
  • 51. Дифференциал. Применение дифференциала к приближенным вычислениям.
  • 52. Теоремы Ролля, Лагранжа, Коши. Правило Лопиталя.
  • 53. Теорема о необходимом и достаточном условиях монотонности функции.
  • 54. Определение максимума, минимума функции. Теоремы о необходимом и достаточном условиях существования экстремума функции.
  • Теорема (необходимое условие экстремума)
  • 55. Выпуклость и вогнутость кривых. Точки перегиба. Теоремы о необходимом и достаточном условиях существования точек перегиба.
  • Доказательство
  • 57. Определители n-ого порядка, их свойства.
  • 58. Матрицы и действия над ними. Ранг матрицы.
  • Определение
  • Связанные определения
  • Свойства
  • Линейное преобразование и ранг матрицы
  • 59. Обратная матрица. Теорема о существовании обратной матрицы.
  • 60. Системы линейных уравнений. Матричное решение систем линейных уравнений. Правило Крамера. Метод Гаусса. Теорема Кронекера-Капелли.
  • Решение систем линейных алгебраических уравнений, методы решения, примеры.
  • Определения, понятия, обозначения.
  • Решение элементарных систем линейных алгебраических уравнений.
  • Решение систем линейных уравнений методом Крамера.
  • Решение систем линейных алгебраических уравнений матричным методом (с помощью обратной матрицы).
  • Решение систем линейных уравнений методом Гаусса.
  • Решение систем линейных алгебраических уравнений общего вида.
  • Теорема Кронекера – Капелли.
  • Метод Гаусса для решения систем линейных алгебраических уравнений общего вида.
  • Запись общего решения однородных и неоднородных систем линейных алгебраических с помощью векторов фундаментальной системы решений.
  • Решение систем уравнений, сводящихся к слау.
  • Примеры задач, сводящихся к решению систем линейных алгебраических уравнений.
  • 12. Длина вектора, длина отрезка, угол между векторами, условие перпендикулярности векторов.

    Вектор – это направленный отрезок, соединяющий две точки в пространстве или в плоскости. Векторы обычно обозначаются либо маленькими буквами, либо начальной и конечной точками. Сверху обычно ставят чёрточку.

    Например, вектор, направленный из точки A к точке B , можно обозначить a ,

    Нулевой вектор 0 или 0 - это вектор, у которого начальная и конечная точки совпадают, т.e. A = B . Отсюда, 0 =0 .

    Длина (модуль) вектора a - это длина отображающего его отрезка AB, обозначается | a | . В частности, | 0 | = 0.

    Векторы называются коллинеарными , если их направленные отрезки лежат на параллельных прямых. Коллинеарные векторы a и b обозначаются a || b .

    Три и более векторов называются компланарными , если они лежат в одной плоскости.

    Сложение векторов. Так как векторы - это направленные отрезки, то их сложение может быть выполнено геометрически . (Алгебраическое сложение векторов изложено ниже, в пункте «Единичные ортогональные векторы»). Предположим, что

    a = AB and b = CD ,

    тогда вектор __ __

    a + b = AB + CD

    есть результат выполнения двух операций:

    a ) параллельного переноса одногоиз векторов таким образом, чтобы его начальная точка совпала с конечной точкой второго вектора;

    б ) геометрического сложения , т.е. построения результирующего вектора, идущего от начальной точки неподвижного вектора к конечной точке перенесённого вектора.

    Вычитание векторов. Эта операция сводится к предыдущей путём замены вычитаемого вектора на противоположный: a b = a + ( b ) .

    Законы сложения.

    I. a + b = b + a (П е р е м е с т и т е л ь н ы й закон).

    II. (a + b ) + c = a + (b + c ) (С о ч е т а т е л ь н ы й закон).

    III. a + 0 = a .

    IV. a + ( a ) = 0 .

    Законы умножения вектора на число.

    I. 1 · a = a , 0 · a = 0 , m · 0 = 0 , (1) · a = a .

    II. m a = a m , | m a | = | m | · | a | .

    III. m (n a ) = (m n) a . (С о ч е т а т е л ь н ы й

    закон умножения на число ).

    IV. (m + n ) a = m a + n a , (Р а с п р е д е л и т е л ь н ы й

    m (a + b ) = m a + m b . закон умножения на число ).

    Скалярное произведение векторов. __ __

    Угол между ненулевыми векторами AB и CD – это угол, образованный векторами при их параллельном переносе до совмещения точек A и C. Скалярным произведением векторов a и b называется число, равное произведению их длин на косинус угла между ними:

    Если один из векторов нулевой, то их скалярное произведение в соответствии с определением равно нулю:

    ( a , 0 ) = ( 0 , b ) = 0 .

    Если оба вектора ненулевые, то косинус угла между ними вычисляется по формуле:

    Скалярное произведение (a , a ), равное | a | 2 , называется скалярным квадратом. Длина вектора a и его скалярный квадрат связаны соотношением:

    Скалярное произведение двух векторов:

    - положительно , если угол между векторами острый ;

    - отрицательно, если угол между векторами тупой .

    Скалярное произведение двух ненулевых векторов равно нулю тогда и только тогда, когда угол между ними прямой, т.е. когда эти векторы перпендикулярны (ортогональны):

    Свойства скалярного произведения. Для любых векторов a , b , c и любого числа m справедливы следующие соотношения:

    I. (a , b ) = ( b , a ) . (П е р е м е с т и т е л ь н ы й закон)

    II. (m a , b ) = m ( a , b ) .

    III. (a + b , c ) = (a , c ) + (b , c ). (Р а с п р е д е л и т е л ь н ы й закон)

    Единичные ортогональные векторы. В любой прямоугольной системе координат можно ввести единичные попарно ортогональные векторы i , j и k , связанные с координатными осями: i – с осью Х , j – с осью Y и k – с осью Z . В соответствии с этим определением:

    (i , j ) = (i , k ) = (j , k ) = 0,

    | i | = | j | = | k | = 1.

    Любой вектор a может быть выражен через эти векторы единственным образом: a = x i + y j + z k . Другая форма записи: a = (x, y, z ). Здесь x , y , z - координаты вектора a в этой системе координат. В соответствии с последним соотношением и свойствами единичных ортогональных векторов i, j , k скалярное произведение двух векторов можно выразить иначе.

    Пусть a = (x, y, z ); b = (u, v, w ). Тогда ( a , b ) = xu + yv + zw .

    Скалярное произведение двух векторов равно сумме произведений соответствующих координат.

    Длина (модуль) вектора a = (x , y , z ) равна:

    Кроме того, теперь мы получаем возможность проведения алгебраических операций над векторами, а именно, сложение и вычитание векторов может выполняться по координатам:

    a + b = (x + u , y + v , z + w ) ;

    a b = (x u , y v , z w ) .

    Векторное произведение векторов. Векторным произведением [a, b ] векторов a и b (в указанном порядке) называется вектор:

    Существует другая формула длины вектора [ a, b ] :

    | [ a, b ] | = | a | | b | sin (a, b ) ,

    т.e. длина ( модуль ) векторного произведения векторов a и b равна произведению длин (модулей) этих векторов на синус угла между ними. Иначе говоря: длина (модуль) вектора [ a, b ] численно равна площади параллелограмма, построенного на векторах a и b .

    Свойства векторного произведения.

    I. Вектор [ a, b ] перпендикулярен (ортогонален) обоим векторам a и b .

    (Докажите это, пожалуйста!) .

    II. [ a , b ] = [ b , a ] .

    III. [ m a , b ] = m [ a , b ] .

    IV. [ a + b , c ] = [ a , c ] + [ b , c ] .

    V. [ a , [ b , c ] ] = b (a , c ) – c ( a , b ) .

    VI. [ [ a , b ] , c ] = b (a , c ) – a (b , c ) .

    Необходимое и достаточное условие коллинеарности векторов a = (x, y, z ) и b = (u, v, w ) :

    Необходимое и достаточное условие компланарности векторов a = (x, y, z ), b = (u, v, w ) и c = (p, q, r ) :

    П р и м е р. Даны векторы: a = (1, 2, 3) и b = (– 2 , 0 ,4).

    Вычислить их скалярное и векторное произведения и угол

    между этими векторами.

    Р е ш е н и е. Используя соответствующие формулы (см. выше), получим:

    a). скалярное произведение:

    ( a , b ) = 1 · (– 2) + 2 · 0 + 3 · 4 = 10 ;

    б). векторное произведение:

    "

    Нахождение координат вектора довольно часто встречаемое условие многих задач в математике. Умение находить координаты вектора поможет вам в других, более сложных задачах со схожей тематикой. В данной статье мы рассмотрим формулу нахождения координат вектора и несколько задач.

    Нахождение координат вектора в плоскости

    Что такое плоскость? Плоскостью считается двухмерное пространство, пространство с двумя измерениями (измерение x и измерение y). К примеру, бумага – плоскость. Поверхность стола – плоскость. Какая-нибудь необъемная фигура (квадрат, треугольник, трапеция) тоже является плоскостью. Таким образом, если в условии задачи нужно найти координаты вектора, который лежит на плоскости, сразу вспоминаем про x и y. Найти координаты такого вектора можно следующим образом: Координаты AB вектора = (xB – xA; yB – xA). Из формулы видно, что от координат конечной точки нужно отнять координаты начальной точки.

    Пример:

    • Вектор CD имеет начальные (5; 6) и конечные (7; 8) координаты.
    • Найти координаты самого вектора.
    • Используя вышеупомянутую формулу, получим следующее выражение: CD = (7-5; 8-6) = (2; 2).
    • Таким образом, координаты CD вектора = (2; 2).
    • Соответственно, x координата равна двум, y координата – тоже двум.

    Нахождение координат вектора в пространстве

    Что такое пространство? Пространство это уже трехмерное измерение, где даны 3 координаты: x, y, z. В случае, если нужно найти вектор, который лежит в пространстве, формула практически не меняется. Добавляется только одна координата. Для нахождения вектора нужно от координат конца отнять координаты начала. AB = (xB – xA; yB – yA; zB – zA)

    Пример:

    • Вектор DF имеет начальные (2; 3; 1) и конечные (1; 5; 2).
    • Применяя вышеупомянутую формулу, получим: Координаты вектора DF = (1-2; 5-3; 2-1) = (-1; 2; 1).
    • Помните, значение координат может быть и отрицательным, в этом нет никакой проблемы.


    Как найти координаты вектора онлайн?

    Если по каким-то причинам вам не хочется находить координаты самостоятельно, можно воспользоваться онлайн калькулятором . Для начала, выберите размерность вектора. Размерность вектора отвечает за его измерения. Размерность 3 означает, что вектор находится в пространстве, размерность 2 – что на плоскости. Далее вставьте координаты точек в соответствующие поля и программа определит вам координаты самого вектора. Все очень просто.


    Нажав на кнопку, страница автоматически прокрутится вниз и выдаст вам правильный ответ вместе с этапами решения.


    Рекомендовано хорошо изучить данную тему, потому что понятие вектора встречается не только в математике, но и в физике. Студенты факультета Информационных Технологий тоже изучают тему векторов, но на более сложном уровне.

  • 6.4. Некоторые приложения скалярного произведения
  • 11. Выражение скалярного произведения вектора через координаты сомножителей. Теорема.
  • 12. Длина вектора, длина отрезка, угол между векторами, условие перпендикулярности векторов.
  • 13. Векторное произведение векторов, его свойства. Площадь параллелограмма.
  • 14. Смешанное произведение векторов, его свойства. Условие компланарности вектора. Объем параллелепипеда. Объём пирамиды.
  • 15. Способы задания прямой на плоскости.
  • 16. Нормальное уравнение прямой на плоскости (вывод). Геометрический смысл коэффициентов.
  • 17. Уравнение прямой на плоскости в отрезках (вывод).
  • Приведение общего уравнения плоскости к уравнению плоскости в отрезках.
  • 18. Уравнение прямой на плоскости с угловым коэффициентом (вывод).
  • 19. Уравнение прямой на плоскости, проходящей через две точки (вывод).
  • 20. Угол между прямыми на плоскости (вывод).
  • 21. Расстояние от точки до прямой на плоскости (вывод).
  • 22. Условия параллельности и перпендикулярности прямых на плоскости (вывод).
  • 23. Уравнение плоскости. Нормальное уравнение плоскости (вывод). Геометрический смысл коэффициентов.
  • 24. Уравнение плоскости в отрезках (вывод).
  • 25. Уравнение плоскости, проходящей через три точки (вывод).
  • 26. Угол между плоскостями (вывод).
  • 27. Расстояние от точки до плоскости (вывод).
  • 28. Условия параллельности и перпендикулярности плоскостей (вывод).
  • 29. Уравнения прямой в r3. Уравнения прямой, проходящей через две фиксированные точки (вывод).
  • 30. Канонические уравнения прямой в пространстве (вывод).
  • Составление канонических уравнений прямой в пространстве.
  • Частные случаи канонических уравнений прямой в пространстве.
  • Канонические уравнения прямой проходящей через две заданные точки пространства.
  • Переход от канонических уравнений прямой в пространстве к другим видам уравнений прямой.
  • 31. Угол между прямыми (вывод).
  • 32. Расстояние от точки до прямой на плоскости (вывод).
  • Расстояние от точки до прямой на плоскости – теория, примеры, решения.
  • Первый способ нахождения расстояния от заданной точки до заданной прямой на плоскости.
  • Второй способ, позволяющий найти расстояние от заданной точки до заданной прямой на плоскости.
  • Решение задач на нахождение расстояния от заданной точки до заданной прямой на плоскости.
  • Расстояние от точки до прямой в пространстве – теория, примеры, решения.
  • Первый способ нахождения расстояния от точки до прямойaв пространстве.
  • Второй способ, позволяющий находить расстояние от точки до прямойaв пространстве.
  • 33. Условия параллельности и перпендикулярности прямых в пространстве.
  • 34. Взаимное расположение прямых в пространстве и прямой с плоскостью.
  • 35. Классическое уравнение эллипса (вывод) и его построение. Каноническое уравнение эллипса имеет вид, где– положительные действительные числа, причём.Как построить эллипс?
  • 36. Классическое уравнение гиперболы (вывод) и его построение. Асимптоты.
  • 37. Каноническое уравнение параболы (вывод) и построение.
  • 38. Функция. Основные определения. Графики основных элементарных функций.
  • 39. Числовые последовательности. Предел числовой последовательности.
  • 40. Бесконечно малые и бесконечно большие величины. Теорема о связи между ними, свойства.
  • 41. Теоремы о действиях над переменными величинами, имеющими конечные пределы.
  • 42. Число e.
  • Содержание
  • Способы определения
  • Свойства
  • История
  • Приближения
  • 43. Определение предела функции. Раскрытие неопределённостей.
  • 44. Замечательные пределы, их вывод. Эквивалентные бесконечно малые величины.
  • Содержание
  • Первый замечательный предел
  • Второй замечательный предел
  • 45. Односторонние пределы. Непрерывность и разрывы функции. Односторонние пределы
  • Левый и правый пределы функции
  • Точка разрыва первого рода
  • Точка разрыва второго рода
  • Точка устранимого разрыва
  • 46. Определение производной. Геометрический смысл, механический смысл производной. Уравнения касательной и нормали к кривой и точке.
  • 47. Теоремы о производной обратной, сложной функций.
  • 48. Производные простейших элементарных функций.
  • 49. Дифференцирование параметрических, неявных и степенно-показательных функций.
  • 21. Дифференцирование неявных и параметрически заданных функций
  • 21.1. Неявно заданная функция
  • 21.2. Функция, заданная параметрически
  • 50. Производные высших порядков. Формула Тейлора.
  • 51. Дифференциал. Применение дифференциала к приближенным вычислениям.
  • 52. Теоремы Ролля, Лагранжа, Коши. Правило Лопиталя.
  • 53. Теорема о необходимом и достаточном условиях монотонности функции.
  • 54. Определение максимума, минимума функции. Теоремы о необходимом и достаточном условиях существования экстремума функции.
  • Теорема (необходимое условие экстремума)
  • 55. Выпуклость и вогнутость кривых. Точки перегиба. Теоремы о необходимом и достаточном условиях существования точек перегиба.
  • Доказательство
  • 57. Определители n-ого порядка, их свойства.
  • 58. Матрицы и действия над ними. Ранг матрицы.
  • Определение
  • Связанные определения
  • Свойства
  • Линейное преобразование и ранг матрицы
  • 59. Обратная матрица. Теорема о существовании обратной матрицы.
  • 60. Системы линейных уравнений. Матричное решение систем линейных уравнений. Правило Крамера. Метод Гаусса. Теорема Кронекера-Капелли.
  • Решение систем линейных алгебраических уравнений, методы решения, примеры.
  • Определения, понятия, обозначения.
  • Решение элементарных систем линейных алгебраических уравнений.
  • Решение систем линейных уравнений методом Крамера.
  • Решение систем линейных алгебраических уравнений матричным методом (с помощью обратной матрицы).
  • Решение систем линейных уравнений методом Гаусса.
  • Решение систем линейных алгебраических уравнений общего вида.
  • Теорема Кронекера – Капелли.
  • Метод Гаусса для решения систем линейных алгебраических уравнений общего вида.
  • Запись общего решения однородных и неоднородных систем линейных алгебраических с помощью векторов фундаментальной системы решений.
  • Решение систем уравнений, сводящихся к слау.
  • Примеры задач, сводящихся к решению систем линейных алгебраических уравнений.
  • 1. Определение вектора. Длина вектора. Коллинеарность, компланарность векторов.

    Вектором называется направленный отрезок. Длиной или модулем вектора называется длина соответствующего направленного отрезка.

    Модуль вектора a обозначается . Векторa называется единичным, если . Векторы называются коллинеарными, если они параллельны одной прямой. Векторы называются компланарными, если они параллельны одной плоскости.

    2. Умножение вектора на число. Свойства операции.

    Умножение вектора на число, даёт противоположно направленный вектор в длиной враз больше. Умножение вектора на число в координатной форме производится умножением всех координат на это число:

    Исходя из определения получается выражение для модуля вектора, умноженного на число:

    Аналогично как и числами, операции сложение вектора с самим с собой можно записать через умножение на число:

    А вычитание векторов можно переписать через сложение и умножение:

    Исходя из того, что умножение на не меняет длины вектора, а меняет только направление и учитывая определение вектора, получаем:

    3. Сложение векторов, вычитание векторов.

    В координатном представлении вектор суммы получается суммированием соответствующих координат слагаемых:

    Для геометрического построения вектора суммы используют различные правила (методы), однако они все дают одинаковый результат. Использование того или иного правила обосновывается решаемой задачей.

    Правило треугольника

    Правило треугольника наиболее естественно следует из понимания вектора как переноса. Ясно, что результат последовательного применения двух переносов инекоторой точки будет тем же, что применение сразу одного переноса, соответствующего этому правилу. Для сложения двух векторовипо правилутреугольника оба эти вектора переносятся параллельно самим себе так, чтобы начало одного из них совпадало с концом другого. Тогда вектор суммы задаётся третьей стороной образовавшегося треугольника, причём его начало совпадает с началом первого вектора, а конец с концом второго вектора.

    Это правило прямо и естественно обобщается для сложения любого количества векторов, переходя в правило ломаной :

    Правило многоугольника

    Начало второго вектора совмещается с концом первого, начало третьего - с концом второго и так далее, сумма же векторов есть вектор, с началом, совпадающим с началом первого, и концом, совпадающим с концом-го (то есть изображается направленным отрезком, замыкающим ломаную). Так же называется правилом ломаной.

    Правило параллелограмма

    Для сложения двух векторов ипо правилупараллелограмма оба эти векторы переносятся параллельно самим себе так, чтобы их начала совпадали. Тогда вектор суммы задаётся диагональю построенного на них параллелограмма, исходящей из их общего начала. (Легко видеть, что эта диагональ совпадает с третьей стороной треугольника при использовании правила треугольника).

    Правило параллелограмма особенно удобно, когда есть потребность изобразить вектор суммы сразу же приложенным к той же точке, к которой приложены оба слагаемых - то есть изобразить все три вектора имеющими общее начало.

    Модуль суммы векторов

    Модуль суммы двух векторов можно вычислить, использую теорему косинусов :

    Где - косинус угла между векторамии.

    Если векторы изображены в соответствии с правилом треугольника и берется угол по рисунку - между сторонами треугольника - что не совпадает с обычным определением угла между векторами, а значит и с углом в приведенной формуле, то последний член приобретает знак минус, что соответствует теореме косинусов в ее прямой формулировке.

    Для суммы произвольного количества векторов применима аналогичная формула, в которой членов с косинусом больше: по одному такому члену существует для каждой пары векторов из суммируемого набора. Например, для трех векторов формула выглядит так:

    Вычитание векторов

    Два вектора и вектор их разности

    Для получения разности в координатной форме надо вычесть соответствующие координаты векторов:

    Для получения вектора разности начала векторов соединяются и началом векторабудет конец, а концом - конец. Если записать, используя точки векторов, то.

    Модуль разности векторов

    Три вектора , как и при сложении, образуют треугольник, и выражение для модуля разности получается аналогичным:

    где - косинус угла между векторамии

    Отличие от формулы модуля суммы в знаке перед косинусом, при этом надо хорошо следить, какой именно угол берется (вариант формулы модуля суммы с углом между сторонами треугольника при суммировании по правилу треугольника по виду не отличается от данной формулы для модуля разности, но надо иметь в виду, что для тут берутся разные углы: в случае суммы берётся угол, когда вектор переносится к концу вектора, когда же ищется модель разности, берётся угол между векторами, приложенными к одной точке; выражение для модуля суммы с использованием того же угла, что в данном выражении для модуля разности, отличается знаком перед косинусом).

    "

    Прежде всего надо разобрать само понятие вектора. Для того, чтобы ввести определение геометрического вектора вспомним, что такое отрезок . Введем следующее определение.

    Определение 1

    Отрезком будем называть часть прямой, которая имеет две границы в виде точек.

    Отрезок может иметь 2 направления. Для обозначения направления будем называть одну из границ отрезка его началом, а другую границу - его концом. Направление указывается от его начала к концу отрезка.

    Определение 2

    Вектором или направленным отрезком будем называть такой отрезок, для которого известно, какая из границ отрезка считается началом, а какая его концом.

    Обозначение: Двумя буквами: $\overline{AB}$ – (где $A$ его начало, а $B$ – его конец).

    Одной маленькой буквой: $\overline{a}$ (рис. 1).

    Введем теперь, непосредственно, понятие длин вектора.

    Определение 3

    Длиной вектора $\overline{a}$ будем называть длину отрезка $a$.

    Обозначение: $|\overline{a}|$

    Понятие длины вектора связано, к примеру, с таким понятием, как равенство двух векторов.

    Определение 4

    Два вектора будем называть равными, если они удовлетворяют двух условиям: 1. Они сонаправлены; 1. Их длины равны (рис. 2).

    Для того, чтобы определять векторы вводят систему координат и определяют координаты для вектора во введенной системе. Как мы знаем, любой вектор можно разложить в виде $\overline{c}=m\overline{i}+n\overline{j}$, где $m$ и $n$ – действительные числа, а $\overline{i}$ и $\overline{j}$ - единичные векторы на оси $Ox$ и $Oy$, соответственно.

    Определение 5

    Коэффициенты разложения вектора $\overline{c}=m\overline{i}+n\overline{j}$ будем называть координатами этого вектора во введенной системе координат. Математически:

    $\overline{c}={m,n}$

    Как найти длину вектора?

    Для того, чтобы вывести формулу для вычисления длины произвольного вектора по данным его координатам рассмотрим следующую задачу:

    Пример 1

    Дано: вектор $\overline{α}$, имеющий координаты ${x,y}$. Найти: длину этого вектора.

    Введем на плоскости декартову систему координат $xOy$. От начал введенной системы координат отложим $\overline{OA}=\overline{a}$. Построим проекции $OA_1$ и $OA_2$ построенного вектора на оси $Ox$ и $Oy$, соответственно (рис. 3).

    Построенный нами вектор $\overline{OA}$ будет радиус вектором для точки $A$, следовательно, она будет иметь координаты ${x,y}$, значит

    $=x$, $[ OA_2]=y$

    Теперь мы легко можем найти искомую длину с помощью теоремы Пифагора, получим

    $|\overline{α}|^2=^2+^2$

    $|\overline{α}|^2=x^2+y^2$

    $|\overline{α}|=\sqrt{x^2+y^2}$

    Ответ: $\sqrt{x^2+y^2}$.

    Вывод: Чтобы найти длину вектора, у которого задан его координаты, необходимо найти корень из квадрата суммы этих координат.

    Пример задач

    Пример 2

    Найдите расстояние между точками $X$ и $Y$, которые имеют следующие координаты: $(-1,5)$ и $(7,3)$, соответственно.

    Любые две точки можно легко связать с понятием вектора. Рассмотрим, к примеру, вектор $\overline{XY}$. Как мы уже знаем, координаты такого вектора можно найти, вычтя из координат конечной точки ($Y$) соответствующие координаты начальной точки ($X$). Получим, что

    Последние материалы раздела:

    Интересные факты о физике
    Интересные факты о физике

    Какая наука богата на интересные факты? Физика! 7 класс - это время, когда школьники начинают изучать её. Чтобы серьезный предмет не казался таким...

    Дмитрий конюхов путешественник биография
    Дмитрий конюхов путешественник биография

    Личное дело Федор Филиппович Конюхов (64 года) родился на берегу Азовского моря в селе Чкалово Запорожской области Украины. Его родители были...

    Ход войны Русско японская 1904 1905 карта военных действий
    Ход войны Русско японская 1904 1905 карта военных действий

    Одним из крупнейших военных конфликтов начала XX века является русско-японская война 1904-1905 гг. Ее результатом была первая, в новейшей истории,...