Какая формула если дискриминант 0. Будьте всегда в настроении

Надеюсь, изучив данную статью, вы научитесь находить корни полного квадратного уравнения.

С помощью дискриминанта решаются только полные квадратные уравнения, для решения неполных квадратных уравнений используют другие методы, которые вы найдете в статье "Решение неполных квадратных уравнений".

Какие же квадратные уравнения называются полными? Это уравнения вида ах 2 + b x + c = 0 , где коэффициенты a, b и с не равны нулю. Итак, чтобы решить полное квадратное уравнение, надо вычислить дискриминант D.

D = b 2 – 4ас.

В зависимости от того какое значение имеет дискриминант, мы и запишем ответ.

Если дискриминант отрицательное число (D < 0),то корней нет.

Если же дискриминант равен нулю, то х = (-b)/2a. Когда дискриминант положительное число (D > 0),

тогда х 1 = (-b - √D)/2a , и х 2 = (-b + √D)/2a .

Например. Решить уравнение х 2 – 4х + 4= 0.

D = 4 2 – 4 · 4 = 0

x = (- (-4))/2 = 2

Ответ: 2.

Решить уравнение 2х 2 + х + 3 = 0.

D = 1 2 – 4 · 2 · 3 = – 23

Ответ: корней нет .

Решить уравнение 2х 2 + 5х – 7 = 0 .

D = 5 2 – 4 · 2 · (–7) = 81

х 1 = (-5 - √81)/(2·2)= (-5 - 9)/4= – 3,5

х 2 = (-5 + √81)/(2·2) = (-5 + 9)/4=1

Ответ: – 3,5 ; 1 .

Итак представим решение полных квадратных уравнений схемой на рисунке1.

По этим формулам можно решать любое полное квадратное уравнение. Нужно только внимательно следить за тем, чтобы уравнение было записано многочленом стандартного вида

ах 2 + bx + c, иначе можно допустить ошибку. Например, в записи уравнения х + 3 + 2х 2 = 0, ошибочно можно решить, что

а = 1, b = 3 и с = 2. Тогда

D = 3 2 – 4 · 1 · 2 = 1 и тогда уравнение имеет два корня. А это неверно. (Смотри решение примера 2 выше).

Поэтому, если уравнение записано не многочленом стандартного вида, вначале полное квадратное уравнение надо записать многочленом стандартного вида (на первом месте должен стоять одночлен с наибольшим показателем степени, то есть ах 2 , затем с меньшим bx , а затем свободный член с.

При решении приведенного квадратного уравнения и квадратного уравнения с четным коэффициентом при втором слагаемом можно использовать и другие формулы. Давайте познакомимся и с этими формулами. Если в полном квадратном уравнении при втором слагаемом коэффициент будет четным (b = 2k), то можно решать уравнение по формулам приведенным на схеме рисунка 2.

Полное квадратное уравнение называется приведенным, если коэффициент при х 2 равен единице и уравнение примет вид х 2 + px + q = 0 . Такое уравнение может быть дано для решения, либо получается делением всех коэффициентов уравнение на коэффициент а , стоящий при х 2 .

На рисунке 3 приведена схема решения приведенных квадратных
уравнений. Рассмотрим на примере применение рассмотренных в данной статье формул.

Пример. Решить уравнение

3х 2 + 6х – 6 = 0.

Давайте решим это уравнение применяя формулы приведенные на схеме рисунка 1.

D = 6 2 – 4 · 3 · (– 6) = 36 + 72 = 108

√D = √108 = √(36 · 3) = 6√3

х 1 = (-6 - 6√3)/(2 · 3) = (6 (-1- √(3)))/6 = –1 – √3

х 2 = (-6 + 6√3)/(2 · 3) = (6 (-1+ √(3)))/6 = –1 + √3

Ответ: –1 – √3; –1 + √3

Можно заметить, что коэффициент при х в этом уравнении четное число, то есть b = 6 или b = 2k , откуда k = 3. Тогда попробуем решить уравнение по формулам, приведенным на схеме рисунка D 1 = 3 2 – 3 · (– 6) = 9 + 18 = 27

√(D 1) = √27 = √(9 · 3) = 3√3

х 1 = (-3 - 3√3)/3 = (3 (-1 - √(3)))/3 = – 1 – √3

х 2 = (-3 + 3√3)/3 = (3 (-1 + √(3)))/3 = – 1 + √3

Ответ: –1 – √3; –1 + √3 . Заметив, что все коэффициенты в этом квадратном уравнении делятся на 3 и выполнив деление, получим приведенное квадратное уравнение x 2 + 2х – 2 = 0 Решим это уравнение, используя формулы для приведенного квадратного
уравнения рисунок 3.

D 2 = 2 2 – 4 · (– 2) = 4 + 8 = 12

√(D 2) = √12 = √(4 · 3) = 2√3

х 1 = (-2 - 2√3)/2 = (2 (-1 - √(3)))/2 = – 1 – √3

х 2 = (-2 + 2√3)/2 = (2 (-1+ √(3)))/2 = – 1 + √3

Ответ: –1 – √3; –1 + √3.

Как видим, при решении этого уравнения по различным формулам мы получили один и тот же ответ. Поэтому хорошо усвоив формулы приведенные на схеме рисунка 1 , вы всегда сможете решить любое полное квадратное уравнение.

сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

Дискриминант, как и квадратные уравнения начинают изучать в курсе алгебры в 8 классе. Решить квадратное уравнение можно через дискриминант и с помощью теоремы Виета. Методика изучения квадратных уравнений, как и формулы дискриминанта достаточно неудачно прививается школьникам, как и многое в настоящем образовании. Поэтому проходят школьные годы, обучение в 9-11 классе заменяет "высшее образование" и все снова ищут - "Как решить квадратное уравнение?", "Как найти корни уравнения?", "Как найти дискриминант?" и...

Формула дискриминанта

Дискриминант D квадратного уравнения a*x^2+bx+c=0 равен D=b^2–4*a*c.
Корни (решения) квадратного уравнения зависят от знака дискриминанта (D) :
D>0 – уравнение имеет 2 различных действительных корня;
D=0 - уравнение имеет 1 корень (2 совпадающих корня):
D<0 – не имеет действительных корней (в школьной теории). В ВУЗах изучают комплексные числа и уже на множестве комплексных чисел уравнение с отрицательным дискриминантом имеет два комплексных корня.
Формула для вычисления дискриминанта достаточно проста, поэтому множество сайтов предлагают онлайн калькулятор дискриминанта. Мы с такого рода скриптами еще не разобрались, поэтому кто знает, как это реализовать просим писать на почту Этот адрес электронной почты защищён от спам-ботов. У вас должен быть включен JavaScript для просмотра. .

Общая формула для нахождения корней квадратного уравнения :

Корни уравнения находим по формуле
Если коэффициент при переменной в квадрате парный то целесообразно исчислять не дискриминант, а четвертую его часть
В таких случаях корни уравнения находят по формуле

Вторая способ нахождения корней - это Теорема Виета.

Формулируется теорема не только для квадратных уравнений, но и для многочленов. Это Вы можете почитать в Википедии или других электронных ресурсах. Однако для упрощения рассмотрим ту ее часть, которая касается приведенных квадратных уравнений, то есть уравнений вида (a=1)
Суть формул Виета заключается в том, что сумма корней уравнения равна коэффициенту при переменной, взятому с противоположным знаком. Произведение корней уравнения равно свободном члену. Формулами теорема Виета имеет запись.
Вывод формулы Виета достаточно прост. Распишем квадратное уравнение через простые множители
Как видите все гениальное одновременно является простым. Эффективно использовать формулу Виета когда разница корней по модулю или разница модулей корней равна 1, 2. Например, следующие уравнения по теореме Виета имеют корни




До 4 уравнения анализ должен выглядеть следующим образом. Произведение корней уравнения равно 6, следовательно корнями могут быть значения (1, 6) и (2, 3) или пары с противоположным знаком. Сумма корней равна 7 (коэффициент при переменной с противоположным знаком). Отсюда делаем вывод что решения квадратного уравнения равны x=2; x=3.
Проще подбирать корни уравнения среди делителей свободного члена, корректируя их знак с целью выполнения формул Виета. В начале это кажется трудно сделать, но с практикой на ряде квадратных уравнений такая методика окажется эффективнее вычисления дискриминанта и нахождения корней квадратного уравнения классическим способом.
Как видите школьная теория изучения дискриминанта и способов нахождения решений уравнения лишена практического смысла - "Зачем школьникам квадратное уравнение?", "Какой физический смысл дискриминанта?".

Давайте попробуем разобраться, что описывает дискриминант?

В курсе алгебры изучают функции, схемы исследования функции и построения графика функций. Из всех функций важное место занимает парабола, уравнение которой можно записать в виде
Так вот физический смысл квадратного уравнения - это нули параболы, то есть точки пересечения графика функции с осью абсцисс Ox
Свойства парабол которые описаны ниже попрошу Вас запомнить. Придет время сдавать экзамены, тесты, или вступительные экзамены и Вы будете благодарны за справочный материал. Знак при переменной в квадрате соответствует тому, будут ли ветки параболы на графике идти вверх (a>0) ,

или парабола ветвями вниз (a<0) .

Вершина параболы лежит посередине между корнями

Физический смысл дискриминанта:

Если дискриминант больше нуля (D>0) парабола имеет две точки пересечения с осью Ox .
Если дискриминант равен нулю (D=0) то парабола в вершине касается оси абсцисс.
И последний случай, когда дискриминант меньше нуля (D<0) – график параболы принадлежит плоскости над осью абсцисс (ветки параболы вверх), или график полностью под осью абсцисс (ветки параболы опущены вниз).

Неполные квадратные уравнения

С помощью этой математической программы вы можете решить квадратное уравнение .

Программа не только даёт ответ задачи, но и отображает процесс решения двумя способами:
- с помощью дискриминанта
- с помощью теоремы Виета (если возможно).

Причём, ответ выводится точный, а не приближенный.
Например, для уравнения \(81x^2-16x-1=0\) ответ выводится в такой форме:

$$ x_1 = \frac{8+\sqrt{145}}{81}, \quad x_2 = \frac{8-\sqrt{145}}{81} $$ а не в такой: \(x_1 = 0,247; \quad x_2 = -0,05 \)

Данная программа может быть полезна учащимся старших классов общеобразовательных школ при подготовке к контрольным работам и экзаменам, при проверке знаний перед ЕГЭ, родителям для контроля решения многих задач по математике и алгебре. А может быть вам слишком накладно нанимать репетитора или покупать новые учебники? Или вы просто хотите как можно быстрее сделать домашнее задание по математике или алгебре? В этом случае вы также можете воспользоваться нашими программами с подробным решением.

Таким образом вы можете проводить своё собственное обучение и/или обучение своих младших братьев или сестёр, при этом уровень образования в области решаемых задач повышается.

Если вы не знакомы с правилами ввода квадратного многочлена, рекомендуем с ними ознакомиться.

Правила ввода квадратного многочлена

В качестве переменной может выступать любая латинсая буква.
Например: \(x, y, z, a, b, c, o, p, q \) и т.д.

Числа можно вводить целые или дробные.
Причём, дробные числа можно вводить не только в виде десятичной, но и в виде обыкновенной дроби.

Правила ввода десятичных дробей.
В десятичных дробях дробная часть от целой может отделяться как точкой так и запятой.
Например, можно вводить десятичные дроби так: 2.5x - 3,5x^2

Правила ввода обыкновенных дробей.
В качестве числителя, знаменателя и целой части дроби может выступать только целое число.

Знаменатель не может быть отрицательным.

При вводе числовой дроби числитель отделяется от знаменателя знаком деления: /
Целая часть отделяется от дроби знаком амперсанд: &
Ввод: 3&1/3 - 5&6/5z +1/7z^2
Результат: \(3\frac{1}{3} - 5\frac{6}{5} z + \frac{1}{7}z^2 \)

При вводе выражения можно использовать скобки . В этом случае при решении квадратного уравнения введённое выражение сначала упрощается.
Например: 1/2(y-1)(y+1)-(5y-10&1/2)


=0
Решить

Обнаружено что не загрузились некоторые скрипты, необходимые для решения этой задачи, и программа может не работать.
Возможно у вас включен AdBlock.
В этом случае отключите его и обновите страницу.

У вас в браузере отключено выполнение JavaScript.
Чтобы решение появилось нужно включить JavaScript.
Вот инструкции, как включить JavaScript в вашем браузере .

Т.к. желающих решить задачу очень много, ваш запрос поставлен в очередь.
Через несколько секунд решение появится ниже.
Пожалуйста подождите сек...


Если вы заметили ошибку в решении , то об этом вы можете написать в Форме обратной связи .
Не забудте указать какую задачу вы решаете и что вводите в поля .



Наши игры, головоломки, эмуляторы:

Немного теории.

Квадратное уравнение и его корни. Неполные квадратные уравнения

Каждое из уравнений
\(-x^2+6x+1,4=0, \quad 8x^2-7x=0, \quad x^2-\frac{4}{9}=0 \)
имеет вид
\(ax^2+bx+c=0, \)
где x - переменная, a, b и c - числа.
В первом уравнении a = -1, b = 6 и c = 1,4, во втором a = 8, b = -7 и c = 0, в третьем a = 1, b = 0 и c = 4/9. Такие уравнения называют квадратными уравнениями .

Определение.
Квадратным уравнением называется уравнение вида ax 2 +bx+c=0, где x - переменная, a, b и c - некоторые числа, причём \(a \neq 0 \).

Числа a, b и c - коэффициенты квадратного уравнения. Число a называют первым коэффициентом, число b - вторым коэффициентом и число c - свободным членом.

В каждом из уравнений вида ax 2 +bx+c=0, где \(a \neq 0 \), наибольшая степень переменной x - квадрат. Отсюда и название: квадратное уравнение.

Заметим, что квадратное уравнение называют ещё уравнением второй степени, так как его левая часть есть многочлен второй степени.

Квадратное уравнение, в котором коэффициент при x 2 равен 1, называют приведённым квадратным уравнением . Например, приведёнными квадратными уравнениями являются уравнения
\(x^2-11x+30=0, \quad x^2-6x=0, \quad x^2-8=0 \)

Если в квадратном уравнении ax 2 +bx+c=0 хотя бы один из коэффициентов b или c равен нулю, то такое уравнение называют неполным квадратным уравнением . Так, уравнения -2x 2 +7=0, 3x 2 -10x=0, -4x 2 =0 - неполные квадратные уравнения. В первом из них b=0, во втором c=0, в третьем b=0 и c=0.

Неполные квадратные уравнения бывают трёх видов:
1) ax 2 +c=0, где \(c \neq 0 \);
2) ax 2 +bx=0, где \(b \neq 0 \);
3) ax 2 =0.

Рассмотрим решение уравнений каждого из этих видов.

Для решения неполного квадратного уравнения вида ax 2 +c=0 при \(c \neq 0 \) переносят его свободный член в правую часть и делят обе части уравнения на a:
\(x^2 = -\frac{c}{a} \Rightarrow x_{1,2} = \pm \sqrt{ -\frac{c}{a}} \)

Так как \(c \neq 0 \), то \(-\frac{c}{a} \neq 0 \)

Если \(-\frac{c}{a}>0 \), то уравнение имеет два корня.

Если \(-\frac{c}{a} Для решения неполного квадратного уравнения вида ax 2 +bx=0 при \(b \neq 0 \) раскладывают его левую часть на множители и получают уравнение
\(x(ax+b)=0 \Rightarrow \left\{ \begin{array}{l} x=0 \\ ax+b=0 \end{array} \right. \Rightarrow \left\{ \begin{array}{l} x=0 \\ x=-\frac{b}{a} \end{array} \right. \)

Значит, неполное квадратное уравнение вида ax 2 +bx=0 при \(b \neq 0 \) всегда имеет два корня.

Неполное квадратное уравнение вида ax 2 =0 равносильно уравнению x 2 =0 и поэтому имеет единственный корень 0.

Формула корней квадратного уравнения

Рассмотрим теперь, как решают квадратные уравнения, в которых оба коэффициента при неизвестных и свободный член отличны от нуля.

Решим квадратне уравнение в общем виде и в результате получим формулу корней. Затем эту формулу можно будет применять при решении любого квадратного уравнения.

Решим квадратное уравнение ax 2 +bx+c=0

Разделив обе его части на a, получим равносильное ему приведённое квадратное уравнение
\(x^2+\frac{b}{a}x +\frac{c}{a}=0 \)

Преобразуем это уравнение, выделив квадрат двучлена:
\(x^2+2x \cdot \frac{b}{2a}+\left(\frac{b}{2a}\right)^2- \left(\frac{b}{2a}\right)^2 + \frac{c}{a} = 0 \Rightarrow \)

\(x^2+2x \cdot \frac{b}{2a}+\left(\frac{b}{2a}\right)^2 = \left(\frac{b}{2a}\right)^2 - \frac{c}{a} \Rightarrow \) \(\left(x+\frac{b}{2a}\right)^2 = \frac{b^2}{4a^2} - \frac{c}{a} \Rightarrow \left(x+\frac{b}{2a}\right)^2 = \frac{b^2-4ac}{4a^2} \Rightarrow \) \(x+\frac{b}{2a} = \pm \sqrt{ \frac{b^2-4ac}{4a^2} } \Rightarrow x = -\frac{b}{2a} + \frac{ \pm \sqrt{b^2-4ac} }{2a} \Rightarrow \) \(x = \frac{ -b \pm \sqrt{b^2-4ac} }{2a} \)

Подкоренное выражение называют дискриминантом квадратного уравнения ax 2 +bx+c=0 («дискриминант» по латыни - различитель). Его обозначают буквой D, т.е.
\(D = b^2-4ac \)

Теперь, используя обозначение дискриминанта, перепишем формулу для корней квадратного уравнения:
\(x_{1,2} = \frac{ -b \pm \sqrt{D} }{2a} \), где \(D= b^2-4ac \)

Очевидно, что:
1) Если D>0, то квадратное уравнение имеет два корня.
2) Если D=0, то квадратное уравнение имеет один корень \(x=-\frac{b}{2a} \).
3) Если D Таким образом, в зависимости от значения дискриминанта квадратное уравнение может иметь два корня (при D > 0), один корень (при D = 0) или не иметь корней (при D При решении квадратного уравнения по данной формуле целесообразно поступать следующим образом:
1) вычислить дискриминант и сравнить его с нулём;
2) если дискриминант положителен или равен нулю, то воспользоваться формулой корней, если дискриминант отрицателен, то записать, что корней нет.

Теорема Виета

Приведённое квадратное уравнение ax 2 -7x+10=0 имеет корни 2 и 5. Сумма корней равна 7, а произведение равно 10. Мы видим, что сумма корней равна второму коэффициенту, взятому с противоположным знаком, а произведение корней равно свободному члену. Таким свойством обладает любое приведённое квадратное уравнение, имеющее корни.

Сумма корней приведённого квадратного уравнения равна второму коэффициенту, взятому с противоположным знаком, а произведение корней равно свободному члену.

Т.е. теорема Виета утверждает, что корни x 1 и x 2 приведённого квадратного уравнения x 2 +px+q=0 обладают свойством:
\(\left\{ \begin{array}{l} x_1+x_2=-p \\ x_1 \cdot x_2=q \end{array} \right. \)

Например, для трехчлена \(3x^2+2x-7\), дискриминант будет равен \(2^2-4\cdot3\cdot(-7)=4+84=88\). А для трехчлена \(x^2-5x+11\), он будет равен \((-5)^2-4\cdot1\cdot11=25-44=-19\).

Дискриминант обозначается буквой \(D\) и часто используется при решении . Также по значению дискриминанта можно понять, как примерно выглядит график (см. ниже).

Дискриминант и корни уравнения

Значение дискриминанта показывает количество квадратного уравнения:
- если \(D\) положителен – уравнение будет иметь два корня;
- если \(D\) равен нулю – только один корень;
- если \(D\) отрицателен – корней нет.

Это не надо учить, к такому выводу несложно прийти, просто зная, что из дискриминанта (то есть, \(\sqrt{D}\) входит в формулу для вычисления корней уравнения: \(x_{1}=\)\(\frac{-b+\sqrt{D}}{2a}\) и \(x_{2}=\)\(\frac{-b-\sqrt{D}}{2a}\) . Давайте рассмотрим каждый случай подробнее.

Если дискриминант положителен

В этом случае корень из него – это некоторое положительное число, а значит \(x_{1}\) и \(x_{2}\) будут различны по значению, ведь в первой формуле \(\sqrt{D}\) прибавляется, а во второй – вычитается. И мы имеем два разных корня.

Пример : Найдите корни уравнения \(x^2+2x-3=0\)
Решение :

Ответ : \(x_{1}=1\); \(x_{2}=-3\)

Если дискриминант равен нулю

А сколько корней будет, если дискриминант равен нулю? Давайте рассуждать.

Формулы корней выглядят так: \(x_{1}=\)\(\frac{-b+\sqrt{D}}{2a}\) и \(x_{2}=\)\(\frac{-b-\sqrt{D}}{2a}\) . И если дискриминант – ноль, то и корень из него тоже ноль. Тогда получается:

\(x_{1}=\)\(\frac{-b+\sqrt{D}}{2a}\) \(=\)\(\frac{-b+\sqrt{0}}{2a}\) \(=\)\(\frac{-b+0}{2a}\) \(=\)\(\frac{-b}{2a}\)

\(x_{2}=\)\(\frac{-b-\sqrt{D}}{2a}\) \(=\)\(\frac{-b-\sqrt{0}}{2a}\) \(=\)\(\frac{-b-0}{2a}\) \(=\)\(\frac{-b}{2a}\)

То есть, значения корней уравнения будут совпадать, потому что прибавление или вычитание нуля ничего не меняет.

Пример : Найдите корни уравнения \(x^2-4x+4=0\)
Решение :

\(x^2-4x+4=0\)

Выписываем коэффициенты:

\(a=1;\) \(b=-4;\) \(c=4;\)

Вычисляем дискриминант по формуле \(D=b^2-4ac\)

\(D=(-4)^2-4\cdot1\cdot4=\)
\(=16-16=0\)

Находим корни уравнения

\(x_{1}=\)\(\frac{-(-4)+\sqrt{0}}{2\cdot1}\) \(=\)\(\frac{4}{2}\) \(=2\)

\(x_{2}=\)\(\frac{-(-4)-\sqrt{0}}{2\cdot1}\) \(=\)\(\frac{4}{2}\) \(=2\)


Получили два одинаковых корня, поэтому нет смысла писать их по отдельности – записываем как один.

Ответ : \(x=2\)

Среди всего курса школьной программы алгебры одной из самых объемных тем является тема о квадратных уравнениях. При этом под квадратным уравнением понимается уравнение вида ax 2 + bx + c = 0, где a ≠ 0 (читается: а умножить на икс в квадрате плюс бэ икс плюс цэ равно нулю, где а неравно нулю). При этом основное место занимают формулы нахождения дискриминанта квадратного уравнения указанного вида, под которым понимается выражение, позволяющее определить наличие или отсутствие корней у квадратного уравнения, а также их количество (при наличии).

Формула (уравнение) дискриминанта квадратного уравнения

Общепринятая формула дискриминанта квадратного уравнения выглядит следующим образом: D = b 2 – 4ac. Вычисляя дискриминант по указанной формуле, можно не только определить наличие и количество корней у квадратного уравнения, но и выбрать способ нахождения этих корней, которых существует несколько в зависимости от типа квадратного уравнения.

Что значит если дискриминант равен нулю \ Формула корней квадратного уравнения если дискриминант равен нулю

Дискриминант, как следует из формулы, обозначается латинской буквой D. В случае, когда дискриминант равен нулю, следует сделать вывод, что квадратное уравнение вида ax 2 + bx + c = 0, где a ≠ 0, имеет только один корень, который вычисляется по упрощенной формуле. Данная формула применяется только при нулевом дискриминанте и выглядит следующим образом: x = –b/2a, где х – корень квадратного уравнения, b и а – соответствующие переменные квадратного уравнения. Для нахождения корня квадратного уравнения необходимо отрицательное значение переменной b разделить на удвоенное значение переменной а. Полученной выражение будет решением квадратного уравнения.

Решение квадратного уравнения через дискриминант

Если при вычислении дискриминанта по вышеприведенной формуле получается положительное значение (D больше нуля), то квадратное уравнение имеет два корня, которые вычисляются по следующим формулам: x 1 = (–b + vD)/2a, x 2 = (–b – vD)/2a. Чаще всего, дискриминант отдельно не высчитывается, а в значение D, из которого извлекается корень, просто подставляется подкоренное выражение в виде формулы дискриминанта. Если переменная b имеет четное значение, то для вычисления корней квадратного уравнения вида ax 2 + bx + c = 0, где a ≠ 0, можно также использовать следующие формулы: x 1 = (–k + v(k2 – ac))/a, x 2 = (–k + v(k2 – ac))/a, где k = b/2.

В некоторых случаях для практического решения квадратных уравнений можно использовать Теорему Виета, которая гласит, что для суммы корней квадратного уравнения вида x 2 + px + q = 0 будет справедливо значение x 1 + x 2 = –p, а для произведения корней указанного уравнения – выражение x 1 x x 2 = q.

Может ли дискриминант быть меньше нуля

При вычислении значения дискриминанта можно столкнуться с ситуацией, которая не попадает ни под один из описанных случаев – когда дискриминант имеет отрицательное значение (то есть меньше нуля). В этом случае принято считать, что квадратное уравнение вида ax 2 + bx + c = 0, где a ≠ 0, действительных корней не имеет, следовательно, его решение будет ограничиваться вычислением дискриминанта, а приводимые выше формулы корней квадратного уравнения в данном случае применяться не будут. При этом в ответе к квадратному уравнению записывается, что «уравнение действительных корней не имеет».

Поясняющее видео:

Последние материалы раздела:

Интересные факты о физике
Интересные факты о физике

Какая наука богата на интересные факты? Физика! 7 класс - это время, когда школьники начинают изучать её. Чтобы серьезный предмет не казался таким...

Дмитрий конюхов путешественник биография
Дмитрий конюхов путешественник биография

Личное дело Федор Филиппович Конюхов (64 года) родился на берегу Азовского моря в селе Чкалово Запорожской области Украины. Его родители были...

Ход войны Русско японская 1904 1905 карта военных действий
Ход войны Русско японская 1904 1905 карта военных действий

Одним из крупнейших военных конфликтов начала XX века является русско-японская война 1904-1905 гг. Ее результатом была первая, в новейшей истории,...