Как запомнить точки на единичной окружности. Урок "определение синуса и косинуса на единичной окружности"

Соблюдение Вашей конфиденциальности важно для нас. По этой причине, мы разработали Политику Конфиденциальности, которая описывает, как мы используем и храним Вашу информацию. Пожалуйста, ознакомьтесь с нашими правилами соблюдения конфиденциальности и сообщите нам, если у вас возникнут какие-либо вопросы.

Сбор и использование персональной информации

Под персональной информацией понимаются данные, которые могут быть использованы для идентификации определенного лица либо связи с ним.

От вас может быть запрошено предоставление вашей персональной информации в любой момент, когда вы связываетесь с нами.

Ниже приведены некоторые примеры типов персональной информации, которую мы можем собирать, и как мы можем использовать такую информацию.

Какую персональную информацию мы собираем:

  • Когда вы оставляете заявку на сайте, мы можем собирать различную информацию, включая ваши имя, номер телефона, адрес электронной почты и т.д.

Как мы используем вашу персональную информацию:

  • Собираемая нами персональная информация позволяет нам связываться с вами и сообщать об уникальных предложениях, акциях и других мероприятиях и ближайших событиях.
  • Время от времени, мы можем использовать вашу персональную информацию для отправки важных уведомлений и сообщений.
  • Мы также можем использовать персональную информацию для внутренних целей, таких как проведения аудита, анализа данных и различных исследований в целях улучшения услуг предоставляемых нами и предоставления Вам рекомендаций относительно наших услуг.
  • Если вы принимаете участие в розыгрыше призов, конкурсе или сходном стимулирующем мероприятии, мы можем использовать предоставляемую вами информацию для управления такими программами.

Раскрытие информации третьим лицам

Мы не раскрываем полученную от Вас информацию третьим лицам.

Исключения:

  • В случае если необходимо - в соответствии с законом, судебным порядком, в судебном разбирательстве, и/или на основании публичных запросов или запросов от государственных органов на территории РФ - раскрыть вашу персональную информацию. Мы также можем раскрывать информацию о вас если мы определим, что такое раскрытие необходимо или уместно в целях безопасности, поддержания правопорядка, или иных общественно важных случаях.
  • В случае реорганизации, слияния или продажи мы можем передать собираемую нами персональную информацию соответствующему третьему лицу – правопреемнику.

Защита персональной информации

Мы предпринимаем меры предосторожности - включая административные, технические и физические - для защиты вашей персональной информации от утраты, кражи, и недобросовестного использования, а также от несанкционированного доступа, раскрытия, изменения и уничтожения.

Соблюдение вашей конфиденциальности на уровне компании

Для того чтобы убедиться, что ваша персональная информация находится в безопасности, мы доводим нормы соблюдения конфиденциальности и безопасности до наших сотрудников, и строго следим за исполнением мер соблюдения конфиденциальности.

Если расположить единичную числовую окружность на координатной плоскости, то для ее точек можно найти координаты. Числовую окружность располагают так, чтобы ее центр совпал с точкой начала координат плоскости, т. е. точкой O (0; 0).

Обычно на единичной числовой окружности отмечают точки соответствующие от начала отсчета на окружности

  • четвертям - 0 или 2π, π/2, π, (2π)/3,
  • серединам четвертей - π/4, (3π)/4, (5π)/4, (7π)/4,
  • третям четвертей - π/6, π/3, (2π)/3, (5π)/6, (7π)/6, (4π)/3, (5π)/3, (11π)/6.

На координатной плоскости при указанном выше расположении на ней единичной окружности можно найти координаты, соответствующие этим точкам окружности.

Координаты концов четвертей найти очень легко. У точки 0 окружности координата x равна 1, а y равен 0. Можно обозначить так A (0) = A (1; 0).

Конец первой четверти будет располагаться на положительной полуоси ординат. Следовательно, B (π/2) = B (0; 1).

Конец второй четверти находится на отрицательной полуоси абсцисс: C (π) = C (-1; 0).

Конец третьей четверти: D ((2π)/3) = D (0; -1).

Но как найти координаты середин четвертей? Для этого строят прямоугольный треугольник. Его гипотенузой является отрезок от центра окружности (или начала координат) к точке середины четверти окружности. Это радиус окружности. Поскольку окружность единичная, то гипотенуза равна 1. Далее проводят перпендикуляр из точки окружности к любой оси. Пусть будет к оси x. Получается прямоугольный треугольник, длины катетов которого - это и есть координаты x и y точки окружности.

Четверть окружности составляет 90º. А половина четверти составляет 45º. Поскольку гипотенуза проведена к точке середины четверти, то угол между гипотенузой и катетом, выходящим из начала координат, равен 45º. Но сумма углов любого треугольника равна 180º. Следовательно, на угол между гипотенузой и другим катетом остается также 45º. Получается равнобедренный прямоугольный треугольник.

Из теоремы Пифагора получаем уравнение x 2 + y 2 = 1 2 . Поскольку x = y, а 1 2 = 1, то уравнение упрощается до x 2 + x 2 = 1. Решив его, получаем x = √½ = 1/√2 = √2/2.

Таким образом, координаты точки M 1 (π/4) = M 1 (√2/2; √2/2).

В координатах точек середин других четвертей будут меняться только знаки, а модули значений оставаться такими же, так как прямоугольный треугольник будет только переворачиваться. Получим:
M 2 ((3π)/4) = M 2 (-√2/2; √2/2)
M 3 ((5π)/4) = M 3 (-√2/2; -√2/2)
M 4 ((7π)/4) = M 4 (√2/2; -√2/2)

При определении координат третьих частей четвертей окружности также строят прямоугольный треугольник. Если брать точку π/6 и проводить перпендикуляр к оси x, то угол между гипотенузой и катетом, лежащим на оси x, составит 30º. Известно, что катет, лежащий против угла в 30º, равен половине гипотенузы. Значит, мы нашли координату y, она равна ½.

Зная длины гипотенузы и одного из катетов, по теореме Пифагора находим другой катет:
x 2 + (½) 2 = 1 2
x 2 = 1 - ¼ = ¾
x = √3/2

Таким образом T 1 (π/6) = T 1 (√3/2; ½).

Для точки второй трети первой четверти (π/3) перпендикуляр на ось лучше провести к оси y. Тогда угол при начале координат также будет 30º. Здесь уже координата x будет равна ½, а y соответственно √3/2: T 2 (π/3) = T 2 (½; √3/2).

Для других точек третей четвертей будут меняться знаки и порядок значений координат. Все точки, которые ближе расположены к оси x будут иметь по модулю значение координаты x, равное √3/2. Те точки, которые ближе к оси y, будут иметь по модулю значение y, равное √3/2.
T 3 ((2π)/3) = T 3 (-½; √3/2)
T 4 ((5π)/6) = T 4 (-√3/2; ½)
T 5 ((7π)/6) = T 5 (-√3/2; -½)
T 6 ((4π)/3) = T 6 (-½; -√3/2)
T 7 ((5π)/3) = T 7 (½; -√3/2)
T 8 ((11π)/6) = T 8 (√3/2; -½)

На тригонометрическом круге помимо углов в градусы мы наблюдаем .

Подробнее про радианы:

Радиан определяется как угловая величина дуги, длина которой равна её радиусу. Соответственно, так как длина окружности равна , то очевидно, что в окружности укладывается радиан, то есть

1 рад ≈ 57,295779513° ≈ 57°17′44,806″ ≈ 206265″.

Все знают, что радиан – это

Так вот, например, , а . Так, мы научились переводить радианы в углы .

Теперь наоборот, давайте переводить градусы в радианы .

Допустим, нам надо перевести в радианы. Нам поможет . Поступаем следующим образом:

Так как, радиан, то заполним таблицу:

Тренируемся находить значения синуса и косинуса по кругу

Давайте еще уточним следующее.

Ну хорошо, если нас просят вычислить, скажем, , – здесь обычно путаницы не возникает – все начинают первым делом искать на круге.

А если просят вычислить, например, … Многие, вдруг, начинают не понимают где искать этот ноль… Частенько ищут его в начале координат. Почему?

1) Давайте договоримся раз и навсегда! То, что стоит после или – это аргумент=угол, а углы у нас располагаются на круге, не ищите их на осяx! (Просто отдельные точки попадают и на круг, и на ось…) А сами значения синусов и косинусов – ищем на осях!

2) И еще! Если мы от точки «старт» отправляемся против часовой стрелки (основное направление обхода тригонометрического круга), то мы откладываем положительные значения углов , значения углов растут при движении в этом направлении.

Если же мы от точки «старт» отправляемся по часовой стрелке, то мы откладываем отрицательные значения углов.

Пример 1.

Найти значение .

Решение:

Находим на круге . Проецируем точку на ось синусов (то есть проводим перпендикуляр из точки к оси синусов (оу)).

Приходим в 0. Значит, .

Пример 2.

Найти значение .

Решение:

Находим на круге (проходим против часовой стрелки и еще ). Проецируем точку на ось синусов (а она уже лежит на оси синусов).

Попадаем в -1 по оси синусов.

Заметим, за точкой «скрываются» такие точки, как (мы могли бы пойти в точку, помеченную как , по часовой стрелке, а значит появляется знак минус), и бесконечно много других.

Можно привести такую аналогию:

Представим тригонометрический круг как беговую дорожку стадиона.


Вы ведь можете оказаться в точке «Флажок», отправляюсь со старта против часовой стрелки, пробежав, допустим, 300 м. Или пробежав, скажем, 100м по часовой стрелке (считаем длину дорожки 400 м).

А также вы можете оказаться в точке «Флажок» (после «старт»), пробежав, скажем, 700 м, 1100 м, 1500 м и т. д. против часовой стрелки. Вы можете оказаться в точке «Флажок», пробежав 500 м или 900 м и т. д. по часовой стрелке от «старт».

Разверните мысленно беговую дорожку стадиона в числовую прямую. Представьте, где на этой прямой будут, например, значения 300, 700, 1100, 1500 и т.д. Мы увидим точки на числовой прямой, равноотстоящие друг от друга. Свернем обратно в круг. Точки «cлепятся» в одну.

Так и с тригонометрическим кругом. За каждой точкой скрыто бесконечно много других.

Скажем, углы , , , и т.д. изображаются одной точкой. И значения синуса, косинуса в них, конечно же, совпадают. (Вы заметили, что мы прибавляли/вычитали или ? Это период для функции синус и косинус.)

Пример 3.

Найти значение .

Решение:

Переведем для простоты в градусы

(позже, когда вы привыкнете к тригонометрическому кругу, вам не потребуется переводить радианы в градусы):

Двигаться будем по часовой стрелки от точки Пройдем полкруга () и еще

Понимаем, что значение синуса совпадает со значением синуса и равняется

Заметим, если б мы взяли, например, или и т.д., то мы получили бы все тоже значение синуса.

Пример 4.

Найти значение .

Решение:

Все же, не будем переводить радианы в градусы, как в предыдущем примере.

То есть нам надо пройти против часовой стрелки полкруга и еще четверть полкруга и спроецировать полученную точку на ось косинусов (горизонтальная ось).

Пример 5.

Найти значение .

Решение:

Как отложить на тригонометрическом круге ?


Если мы пройдем или , да хоть , мы все равно окажемся в точке, которую мы обозначили как «старт». Поэтому, можно сразу пройти в точку на круге

Пример 6.

Найти значение .

Решение:

Мы окажемся в точке ( приведет нас все равно в точку ноль). Проецируем точку круга на ось косинусов (смотри тригонометрический круг), попадаем в . То есть .

Тригонометрический круг – у вас в руках

Вы же уже поняли, что главное – запомнить значения тригонометрических функций первой четверти. В остальных четвертях все аналогично, нужно лишь следить за знаками. А «цепочку-лесенку» значений тригонометрических функций, вы, надеюсь уже не забудете.

Как находить значения тангенса и котангенса основных углов .

После чего, познакомившись с основными значениями тангенса и котангенса, вы можете пройти

На пустой шаблон круга. Тренируйтесь!

(10-й класс)

Цель. Показать учащимся приём построения “табличных” и связанных с ними углов без транспортира. Научить записывать значения углов, соответствующих указанным точкам единичной окружности.

Оборудование.

  1. Модель единичной окружности (плакат).
  2. Плакат единичной окружности, где показаны приёмы построения “табличных” углов.
  3. Карточки самостоятельных работ.
  4. Карточки с домашними заданиями.
  5. Карточки – “считалочки”.
  6. Геометрические инструменты.
  7. Фломастеры, цветной мел.
  8. Кодоскоп.

I. Организационный момент.

Постановка цели, мотивация учения.

Чтобы лучше понять и запомнить расположение точек на единичной окружности, мы познакомимся с приёмами построения “табличных” (30°, 45°, 60°) и связанных с ними углов без транспортира. Это позволит в дальнейшем не только легче освоить радианную меру угла, но и быстрее находить значения тригонометрических функций, хорошо решать простейшие тригонометрические уравнения, неравенства, системы.

II. Новый материал.

(фронтальная форма учебной работы)

1.1. Начертите на определённых листах и на доске координатную плоскость и окружность с центром в начале координат радиусом равным 1.

1.2. Определение единичной окружности (учащиеся)

1.3. Понятие узловых точек (пересечения единичной окружности и осей координат)

2.1. Отметим угловые точки на единичной окружности и запишем соответствующие им углы (0°, 90°, 180°, 360°)

(учащиеся работают у доски и на своих моделях единичной окружности).

Положительные углы против хода часовой стрелки (одним цветом).

Отрицательные углы – по часовой стрелке (другим цветом).

Все углы записываем внутри окружности.

3.1. Как построить точки, соответствующие углам 45°, 135°, 225°, 315°?

(делением пополам координатных углов).

3.2. Учащиеся предлагают свои варианты. Затем на отдельно приготовленном плакате рассказывают приём построение точек, соответствующие углам 45°, 135°, 225°, 315°.

3.3. Данный приём применяется к единичной окружности на доске и к своим моделям. Отмечают точки, соответствующие углам 45°, 135°, 225°, 315°.

4.1. Как построить точки соответствующие углам 30°, 150°, 210°, 330°?

(делением пополам вертикальных радиусов).

4.2. Учащиеся предлагают свои варианты. Затем по готовому плакату объясняют построение данных углов.

4.3. На демонстрационной модели и своих моделях единичных окружностей отмечают точки, соответствующие углам 30°, 150°, 210°, 330°.

5.1. Как построить точки соответствующие углам 60°, 120°, 240°, 300°?

(делением пополам горизонтальных радиусов).

5.2. Учащиеся предлагают свои варианты. Затем по готовому плакату объясняют приём построения данных углов

5.3. Учащиеся отмечают данные углы на демонстрационной модели и на своих моделях, используя предложенный приём.

6.1. Выразим в радианной мере величины углов

6.2. Около каждой из отмеченных точек единичной окружности запишем им соответствующие углы в радианах. (Вычисления на доске. Пример.)

(неотрицательные числа пишем одним цветом, а отрицательные другим).

7.1. Запоминанию данных углов помогает “Считалка”.

(карточки со “ Считалками” разложены на ученических столах перед началом урока).

а) “Ра пи на два” (/2)

“Два пи на два” ()

“Три пи на два” (3/2)

б) “Раз пи на четыре” (/4)

“Два пи на четыре” (2/4)

“Три пи на четыре” (3/4)

8. Запись углов, соответствующих одной точке единичной окружности

Пусть на окружности дана точка Р, которая получается повтором точки Р 0 на угол .

При обходе окружности на целое число оборотов мы попадаем на исходную точку Р. Значит, точке Р наравне с числом соответствует любое число вида +2п , п ЄZ.

На единичной окружности отмечены точки, соответствующие углам, запишите все такие углы, используя градусную меру и радианную.

0 =45 0 , любой другой угол отличается от угла 0 на 360 0 п , п ЄZ.

Запишем: =45 0 +360 0 п, п Є Z;

III. Проверка усвоения изученного.

(самостоятельная работа)

Для всех учащихся карточки с заданиями самостоятельной работы (записываем только ответы).

Самостоятельная работа.

1.На единичной окружности отмечены точки, соответствующие углам и , заключённым в промежутке от 0 0 до 360 0 . Выразите углы и в градусах.

2. На единичной окружности отмечены точки, соответствующие углам и , заключённым в промежутке от 0 до 2 радиан. Выразите углы и , в радианах

3.На единичной окружности отмечены точки, соответствующие углам и , заключённым в промежутке от 0 до 2 радиан. Выразите и в радианах.

4. На единичной окружности отмечены точки, соответствующие углам и . Запишите все углы и , используя градусную меру.

Надеюсь, вы уже прочитали про числовую окружность и знаете, почему она называется числовой, где на ней начало координат и в какой стороне положительное направление. Если нет, то бегом ! Если вы, конечно, собираетесь находить точки на числовой окружности.

Обозначаем числа \(2π\), \(π\), \(\frac{π}{2}\), \(-\frac{π}{2}\), \(\frac{3π}{2}\)

Как вы знаете из прошлой статьи, радиус числовой окружности равен \(1\). Значит, длина окружности равняется \(2π\) (вычислили по формуле \(l=2πR\)). С учетом этого отметим \(2π\) на числовой окружности. Чтобы отметить это число нужно пройти от \(0\) по числовой окружности расстояние равно \(2π\) в положительном направлении, а так как длина окружности \(2π\), то получается, что мы сделаем полный оборот. То есть, числу \(2π\) и \(0\) соответствует одна и та же точка. Не переживайте, несколько значений для одной точки - это нормально для числовой окружности.

Теперь обозначим на числовой окружности число \(π\). \(π\) – это половина от \(2π\). Таким образом, чтобы отметить это число и соответствующую ему точку, нужно пройти от \(0\) в положительном направлении половину окружности.


Отметим точку \(\frac{π}{2}\) . \(\frac{π}{2}\) – это половина от \(π\), следовательно чтобы отметить это число, нужно от \(0\) пройти в положительном направлении расстояние равное половине \(π\), то есть четверть окружности.


Обозначим на окружности точки \(-\)\(\frac{π}{2}\) . Двигаемся на такое же расстояние, как в прошлый раз, но в отрицательном направлении.


Нанесем \(-π\). Для этого пройдем расстояние равное половине окружности в отрицательном направлении.


Теперь рассмотрим пример посложнее. Отметим на окружности число \(\frac{3π}{2}\) . Для этого дробь \(\frac{3}{2}\) переведем в \(\frac{3}{2}\) \(=1\)\(\frac{1}{2}\) , т.е. \(\frac{3π}{2}\) \(=π+\)\(\frac{π}{2}\) . Значит, нужно от \(0\) в положительную сторону пройти расстояние в пол окружности и еще в четверть.



Задание 1 . Отметьте на числовой окружности точки \(-2π\),\(-\)\(\frac{3π}{2}\) .

Обозначаем числа \(\frac{π}{4}\), \(\frac{π}{3}\), \(\frac{π}{6}\) ,\(\frac{7π}{6}\), \(-\frac{4π}{3}\), \(\frac{7π}{4}\)

Выше мы нашли значения в точках пересечения числовой окружности с осями \(x\) и \(y\). Теперь определим положение промежуточных точек. Для начала нанесем точки \(\frac{π}{4}\) , \(\frac{π}{3}\) и \(\frac{π}{6}\) .
\(\frac{π}{4}\) – это половина от \(\frac{π}{2}\) (то есть, \(\frac{π}{4}\) \(=\)\(\frac{π}{2}\) \(:2)\) , поэтому расстояние \(\frac{π}{4}\) – это половина четверти окружности.


\(\frac{π}{4}\) – это треть от \(π\) (иначе говоря,\(\frac{π}{3}\) \(=π:3\)), поэтому расстояние \(\frac{π}{3}\) – это треть от полукруга.

\(\frac{π}{6}\) – это половина \(\frac{π}{3}\) (ведь \(\frac{π}{6}\) \(=\)\(\frac{π}{3}\) \(:2\)) поэтому расстояние \(\frac{π}{6}\) – это половина от расстояния \(\frac{π}{3}\) .


Вот так они расположены друг относительно друга:

Замечание: Расположение точек со значением \(0\), \(\frac{π}{2}\) ,\(π\), \(\frac{3π}{2}\) , \(\frac{π}{4}\) , \(\frac{π}{3}\) , \(\frac{π}{6}\) лучше просто запомнить. Без них числовая окружность, как компьютер без монитора, вроде бы и полезная штука, а использовать крайне неудобно.


Давайте теперь обозначим на окружности точку \(\frac{7π}{6}\) , для этого выполним следующие преобразования: \(\frac{7π}{6}\) \(=\)\(\frac{6π + π}{6}\) \(=\)\(\frac{6π}{6}\) \(+\)\(\frac{π}{6}\) \(=π+\)\(\frac{π}{6}\) . Отсюда видно, что от нуля в положительную сторону надо пройти расстояние \(π\), а потом еще \(\frac{π}{6}\) .


Отметим на окружности точку \(-\)\(\frac{4π}{3}\) . Преобразовываем: \(-\)\(\frac{4π}{3}\) \(=-\)\(\frac{3π}{3}\) \(-\)\(\frac{π}{3}\) \(=-π-\)\(\frac{π}{3}\) . Значит надо от \(0\) пройти в отрицательную сторону расстояние \(π\) и еще \(\frac{π}{3}\) .


Нанесем точку \(\frac{7π}{4}\) , для этого преобразуем \(\frac{7π}{4}\) \(=\)\(\frac{8π-π}{4}\) \(=\)\(\frac{8π}{4}\) \(-\)\(\frac{π}{4}\) \(=2π-\)\(\frac{π}{4}\) . Значит, чтобы поставить точку со значением \(\frac{7π}{4}\) , надо от точки со значением \(2π\) пройти в отрицательную сторону расстояние \(\frac{π}{4}\) .


Задание 2 . Отметьте на числовой окружности точки \(-\)\(\frac{π}{6}\) ,\(-\)\(\frac{π}{4}\) ,\(-\)\(\frac{π}{3}\) ,\(\frac{5π}{4}\) ,\(-\)\(\frac{7π}{6}\) ,\(\frac{11π}{6}\) , \(\frac{2π}{3}\) ,\(-\)\(\frac{3π}{4}\) .

Обозначаем числа \(10π\), \(-3π\), \(\frac{7π}{2}\) ,\(\frac{16π}{3}\), \(-\frac{21π}{2}\), \(-\frac{29π}{6}\)

Запишем \(10π\) в виде \(5 \cdot 2π\). Вспоминаем, что \(2π\) – это расстояние равное длине окружности, поэтому чтобы отметить точку \(10π\), нужно от нуля пройти расстояние равное \(5\) окружностям. Нетрудно догадаться, что мы окажемся снова в точке \(0\), просто сделаем пять оборотов.


Из этого примера можно сделать вывод:

Числам с разницей в \(2πn\), где \(n∈Z\) (то есть \(n\) - любое целое число) соответствует одна и та же точка.

То есть, чтобы поставить число со значением больше \(2π\) (или меньше \(-2π\)), надо выделить из него целое четное количество \(π\) (\(2π\), \(8π\), \(-10π\)…) и отбросить. Тем самым мы уберем из числа, не влияющие на положение точки «пустые обороты».

Еще один вывод:

Точке, которой соответствует \(0\), также соответствуют все четные количества \(π\) (\(±2π\),\(±4π\),\(±6π\)…).

Теперь нанесем на окружность \(-3π\). \(-3π=-π-2π\), значит \(-3π\) и \(–π\) находятся в одном месте на окружности (так как отличаются на «пустой оборот» в \(-2π\)).


Кстати, там же будут находиться все нечетные \(π\).

Точке, которой соответствует \(π\), также соответствуют все нечетные количества \(π\) (\(±π\),\(±3π\),\(±5π\)…).

Сейчас обозначим число \(\frac{7π}{2}\) . Как обычно, преобразовываем: \(\frac{7π}{2}\) \(=\)\(\frac{6π}{2}\) \(+\)\(\frac{π}{2}\) \(=3π+\)\(\frac{π}{2}\) \(=2π+π+\)\(\frac{π}{2}\) . Два пи – отбрасываем, и получается что, для обозначения числа \(\frac{7π}{2}\) нужно от нуля в положительную сторону пройти расстояние равное \(π+\)\(\frac{π}{2}\) (т.е. половину окружности и еще четверть).

Последние материалы раздела:

Чудеса Космоса: интересные факты о планетах Солнечной системы
Чудеса Космоса: интересные факты о планетах Солнечной системы

ПЛАНЕТЫ В древние времена люди знали только пять планет: Меркурий, Венера, Марс, Юпитер и Сатурн, только их можно увидеть невооруженным глазом....

Реферат: Школьный тур олимпиады по литературе Задания
Реферат: Школьный тур олимпиады по литературе Задания

Посвящается Я. П. Полонскому У широкой степной дороги, называемой большим шляхом, ночевала отара овец. Стерегли ее два пастуха. Один, старик лет...

Самые длинные романы в истории литературы Самое длинное литературное произведение в мире
Самые длинные романы в истории литературы Самое длинное литературное произведение в мире

Книга длинной в 1856 метровЗадаваясь вопросом, какая книга самая длинная, мы подразумеваем в первую очередь длину слова, а не физическую длину....