История геологического развития земли. В каком геологическом периоде мы живем

Возникновение Земли и ранние этапы ее становления

Одной из важных задач современного естествознания в области наук о Земле является восстановление истории ее развития . По современным космогоническим представлениям, Земля образовалась из рассеянного в протосолнечной системе газопылевого вещества. Один из наиболее вероятных вариантов возникновения Земли выглядит следующим образом. Вначале образовались Солнце и уплощенная вращающаяся околосолнечная туманность из межзвездного газопылевого облака под влиянием, например, взрыва близкой сверхновой звезды. Далее происходила эволюция Солнца и околосолнечной туманности с передачей электромагнитным или турбулентно-конвективным способом момента количества движения от Солнца планетам. В последующем «пыльная плазма» конденсировалась в кольца вокруг Солнца, а материал колец образовал так называемые планетезимали, которые конденсировались до планет. После этого подобный процесс повторился вокруг планет, что привело к образованию спутников. Считается, что этот процесс занял около 100 млн лет.

Предполагается, что далее в результате дифференциации вещества Земли под действием ее гравитационного поля и радиоактивного нагрева возникли и развились различные по химическому составу, агрегатному состоянию и физическим свойствам оболочки - геосферы Земли. Более тяжелый материал сформировал ядро, состоящее, вероятно, из железа с примесью никеля и серы. В мантии остались несколько более легкие элементы. Согласно одной из гипотез, мантия сложена простыми оксидами алюминия, железа, титана кремния и др. О составе земной коры уже говорилось достаточно подробно в § 8.2. Она сложена более легкими силикатами. Еще более легкие газы и влага сформировали первичную атмосферу.

Как уже говорилось, предполагается, что Земля родилась из скопления холодных твердых частиц, выпадавших из газопылевой туманности и слипавшихся под влиянием взаимного притяжения. По мере роста планеты она разогревалась вследствие соударения этих частиц, достигавших нескольких сот километров, подобно современным астероидам, и выделения теплоты не только известными нам теперь в коре естественно -радиоактивными элементами, но и более чем 10 вымершими с тех пор радиоактивными изотопами AI, Be, Cl и др. В результате могло происходить полное (в ядре) или частичное (в мантии) плавление вещества. В начальный период своего существования, примерно до 3,8 млрд лет, Земля и другие планеты земной группы, а также Луна подвергались усиленной бомбардировке мелкими и крупными метеоритами. Следствием этой бомбардировки и более раннего соударения планетезималей могло стать выделение летучих и начало образования вторичной атмосферы, так как первичная, состоявшая из газов, захваченных при образовании Земли, скорее всего быстро рассеялась в космическом пространстве. Несколько позже стала формироваться гидросфера. Сформировавшиеся таким образом атмосфера и гидросфера пополнялись в процессе дегазации мантии при вулканической деятельности.

Падение крупных метеоритов создавало обширные и глубокие кратеры, подобные наблюдаемым в настоящее время на Луне, Марсе, Меркурии, где следы их не стерты последующими изменениями. Кратерообразование могло провоцировать излияния магмы с образованием базальтовых полей, подобных покрывающим лунные «моря». Так, вероятно, образовалась первичная кора Земли, которая, однако, не сохранилась на современной ее поверхности, за исключением относительно небольших фрагментов в «более молодой» коре континентального типа.

Эта кора, содержащая в своем составе уже граниты и гнейсы, правда, с меньшим содержанием кремнезема и калия, чем в «нормальных» гранитах, появилась на рубеже около 3,8 млрд лет и известна нам по обнажениям в пределах кристаллических щитов практически всех континентов. Способ образования древнейшей континентальной коры пока во многом неясен. В составе этой коры, повсеместно метаморфизованной в условиях высоких температур и давлений, находят породы, текстурные особенности которых свидетельствуют о накоплении в водной среде, т.е. в эту отдаленную эпоху уже существовала гидросфера. Возникновение первой коры, подобной современной, требовало поступления из мантии больших количеств кремнезема, алюминия, щелочей, в то время как сейчас мантийный магматизм создает очень ограниченный объем обогащенных этими элементами пород. Считается, что 3,5 млрд лет назад на площади современных континентов была широко распространена серогнейсовая кора, названная так по преобладающему типу слагающих ее пород. В нашей стране она, например, известна на Кольском полуострове и в Сибири, в частности в бассейне р. Алдан.

Принципы периодизации геологической истории Земли

Дальнейшие события в геологическое время часто определяются, согласно относительной геохронологии, категориями «древнее», «моложе». Например, какая-то эра древнее некоторой другой. Отдельные отрезки геологической истории называются (в порядке уменьшения их продолжительности) зонами, эрами, периодами, эпохами, веками. Их выявление основано на том факте, что геологические события запечатлеваются в горных породах, а осадочные и вулканогенные породы располагаются в земной коре слоями. В 1669 г. Н. Стеной установил закон последовательности напластования, согласно которому нижележащие пласты осадочных пород древнее вышележащих, т.е. образовались ранее их. Благодаря этому появилась возможность определения относительной последовательности образования слоев, а значит, связанных с ними геологических событий.

Основным в относительной геохронологии является биостратиграфический, или палеонтологический, метод установления относительного возраста и последовательности залегания пород. Этот метод был предложен У. Смитом в начале XIX в., а затем развит Ж. Кювье и А. Броньяром. Дело в том, что в большинстве осадочных пород можно встретить остатки животных или растительных организмов. Ж.Б. Ламарк и Ч. Дарвин установили, что животные и растительные организмы в течение геологической истории постепенно совершенствовались в борьбе за существование, приспосабливаясь к изменяющимся условиям жизни. Некоторые животные и растительные организмы на определенных стадиях развития Земли вымирали, на смену им приходили другие, более совершенные. Таким образом, по остаткам ранее живших более примитивных предков, найденным в каком-нибудь пласте, можно судить об относительно более древнем возрасте данного пласта.

Еще один метод геохронологического расчленения пород, особенно важный для расчленения магматических образований океанического дна, основан на свойстве магнитной восприимчивости горных пород и минералов, образующихся в магнитном поле Земли. С изменением ориентировки породы относительно магнитного поля или самого поля часть «врожденной» намагниченности сохраняется, а смена полярности запечатлевается в изменении ориентировки остаточной намагниченности пород. В настоящее время установлена шкала смены таких эпох.

Абсолютная геохронология - учение об измерении геологического времени, выраженного в обычных абсолютных астрономических единицах (годах), - определяет время возникновения, завершения и длительность всех геологических событий, в первую очередь время образования или преобразования (метаморфизма) горных пород и минералов, так как по их возрасту определяется возраст геологических событий. Основным методом здесь является анализ соотношения радиоактивных веществ и продуктов их распада в горных породах, образовывавшихся в разные эпохи.

Древнейшие породы в настоящее время установлены в Западной Гренландии (3,8 млрд лет). Самый большой возраст (4,1 - 4,2 млрд лет) получен по цирконам из Западной Австралии, но циркон здесь залегает в переотложенном состоянии в мезозойских песчаниках. С учетом представлений об одновременности образования всех планет Солнечной системы и Луны и возраста самых древних метеоритов (4,5-4,6 млрд лет) и древних лунных пород (4,0-4,5 млрд лет) возраст Земли принимается равным 4,6 млрд лет.

В 1881 г. на II Международном геологическом конгрессе в Болонье (Италия) были утверждены основные подразделения совмещенных стратиграфической (для разделения слоистых осадочных пород) и геохронологической шкал. По этой шкале история Земли делилась на четыре эры в соответствии с этапами развития органического мира: 1) архейская, или археозойская - эра древнейшей жизни; 2) палеозойская - эра древней жизни; 3) мезозойская - эра средней жизни; 4) кайнозойская - эра новой жизни. В 1887 г. из состава архейской эры выделили протерозойскую - эру первичной жизни. Позднее шкала совершенствовалась. Один из вариантов современной геохронологической шкалы представлен в табл. 8.1. Архейская эра разделяется на две части: ранний (древнее 3500 млн лет) и поздний архей; протерозойская - также на две: ранний и поздний протерозой; в последнем выделяют рифейский (название произошло от древнего названия Уральских гор) и вендский периоды. Фанерозойский зон подразделяется на палеозойскую, мезозойскую и кайнозойскую эры и состоит из 12 периодов.

Таблица 8.1. Геохронологическая шкала

Возраст (начало),

Фанерозой

Кайнозойская

Четвертичный

Неогеновый

Палеогеновый

Мезозойская

Триасовый

Палеозойская

Пермский

Каменноугольный

Девонский

Силурийский

Ордовикский

Кембрийский

Криптозой

Протерозойская

Вендский

Рифейский

Карельский

Архейская

Катархейская

Основные этапы эволюции земной коры

Кратко рассмотрим основные этапы эволюции земной коры как косного субстрата, на котором развилось многообразие окружающей природы .

В apxee еще довольно тонкая и пластичная кора под влиянием растяжения испытала многочисленные разрывы сплошности, через которые к поверхности вновь устремилась базальтовая магма, заполнившая прогибы длиной сотни километров и шириной многие десятки километров, известные как зелено-каменные пояса (этим названием они обязаны преобладающему зеленосланцевому низкотемпературному метаморфизму базальтовых пород). Наряду с базальтами среди лав нижней, основной по мощности части разреза этих поясов встречаются высокомагнезиальные лавы, свидетельствующие об очень большой степени частичного плавления мантийного вещества, что говорит о высоком тепловом потоке, намного превышавшем современный. Развитие зеленокаменных поясов заключалось в смене типа вулканизма в направлении увеличения содержания в нем диоксида кремния (SiO 2), в деформациях сжатия и метаморфизме осадочно-вулканогенного выполнения и, наконец, в накоплении обломочных осадков, свидетельствующих об образовании гористого рельефа.

После смены нескольких поколений зеленокаменных поясов архейский этап эволюции земной коры завершился 3,0 -2,5 млрд лет назад массовым образованием нормальных гранитов с преобладанием К 2 О над Na 2 O. Гранитизация, а также региональный метаморфизм, местами достигший высшей ступени, привели к формированию зрелой континентальной коры на большей части площади современных материков. Однако и эта кора оказалась недостаточно устойчивой: в начале протерозойской эры она испытала дробление. В это время возникла планетарная сеть разломов и трещин, заполнявшихся дайками (пластинообразными геологическими телами). Одна из них - Великая дайка в Зимбабве - имеет длину более 500 км и ширину до 10 км. Кроме того, впервые проявилось рифтообразование, давшее начало зонам прогибания, мощного осадконакопления и вулканизма. Их эволюция привела к созданию в конце раннего протерозоя (2,0-1,7 млрд лет назад) складчатых систем, вновь спаявших обломки архейской континентальной коры, чему способствовала новая эпоха мощного гранитообразования.

В итоге к концу раннего протерозоя (к рубежу 1,7 млрд лет назад) зрелая континентальная кора существовала уже на 60- 80% площади ее современного распространения. Более того, некоторые ученые полагают, что на этом рубеже вся континентальная кора составляла единый массив - суперконтинент Мегагею (большая земля), которому на другой стороне земного шара противостоял океан - предшественник современного Тихого океана - Мегаталасса (большое море). Этот океан был менее глубоким, чем современные океаны, ибо рост объема гидросферы за счет дегазации мантии в процессе вулканической деятельности продолжается всю последующую историю Земли, хотя и более медленно. Не исключено, что прообраз Мегаталассы появился еще раньше, в конце архея.

В катархее и начале архея появились первые следы жизни - бактерии и водоросли, а в позднем архее распространились водорослевые известковые постройки - строматолиты. В позднем архее началось, а в раннем протерозое завершилось коренное изменение состава атмосферы: под влиянием жизнедеятельности растений в ней появился свободный кислород, тогда как катархейская и раннеархейская атмосфера состояла из водяного пара, СО 2 , СО, СН 4 , N, NH 3 и H 2 S с примесью НС1, HF и инертных газов.

В позднем протерозое (1,7-0,6 млрд лет назад) Мегагея стала постепенно раскалываться, и этот процесс резко усилился в конце протерозоя. Следами его являются протяженные континентальные рифтовые системы, погребенные в основании осадочного чехла древних платформ. Важнейшим его результатом было образование обширных межконтинентальных подвижных поясов - Северо-Атлантического, Средиземноморского, Урало-Охотского, разделивших континенты Северной Америки, Восточной Европы, Восточной Азии и наиболее крупный обломок Мегагеи - южный суперконтинент Гондвану. Центральные части этих поясов развивались на новообразованной в процессе рифтогенеза океанской коре, т.е. пояса представляли собой океанские бассейны. Их глубина постепенно увеличивалась по мере роста гидросферы. Одновременно подвижные пояса развивались по периферии Тихого океана, глубина которого также возрастала. Климатические условия становились более контрастными, о чем свидетельствует появление, особенно в конце протерозоя, ледниковых отложений (тиллитов, древних морен и водно-ледниковых осадков).

Палеозойский этап эволюции земной коры характеризовался интенсивным развитием подвижных поясов - межконтинентальных и окраинно-континентальных (последние на периферии Тихого океана). Эти пояса расчленялись на окраинные моря и островные дуги, их осадочно-вулканогенные толщи испытывали сложные складчато-надвиговые, а затем сбрососдвиговые деформации, в них внедрялись граниты и на этой основе формировались складчатые горные системы. Этот процесс протекал неравномерно. В нем различают ряд интенсивных тектонических эпох и гранитного магматизма: байкальскую - в самом конце протерозоя, салаирскую (от хребта Са-лаир в Средней Сибири) - в конце кембрия, таковскую (от Таковских гор на востоке США) - в конце ордовика, каледонскую (от древнеримского названия Шотландии) - в конце силура, акадскую (Акадия - старинное название северо-восточных штатов США) - в середине девона, судетскую - в конце раннего карбона, заальскую (от р. Заале в Германии) - в середине ранней перми. Первые три тектонические эпохи палеозоя нередко объединяют в каледонскую эру тектогенеза, последние три - в герцинскую, или варисскую. В каждую из перечисленных тектонических эпох определенные части подвижных поясов превращались в складчатые горные сооружения, а после разрушения (денудации) входили в состав фундамента молодых платформ. Но некоторые из них частично испытывали активизацию в последующие эпохи горообразования.

К концу палеозоя межконтинентальные подвижные пояса полностью замкнулись и заполнились складчатыми системами. В результате отмирания Северо-Атлантического пояса Североамериканский континент сомкнулся с Восточно-Европейским, а последний (после завершения развития Урало-Охотского пояса) - с Сибирским, Сибирский - с Китайско-Корейским. В итоге образовался суперконтинент Лавразия, а отмирание западной части Средиземноморского пояса привело к его объединению с южным суперконтинентом - Гондваной - в одну континентальную глыбу - Пангею. Восточная часть Средиземноморского пояса в конце палеозоя - начале мезозоя превратилась в огромный залив Тихого океана, по периферии которого также поднялись складчатые горные сооружения.

На фоне этих изменений структуры и рельефа Земли продолжалось развитие жизни. Первые животные появились еще в позднем протерозое, а на самой заре фанерозоя существовали почти все типы беспозвоночных, но они еще были лишены раковин или панцирей, которые известны с кембрия. В силуре (или уже в ордовике) начался выход растительности на сушу, а в конце девона существовали леса, получившие наибольшее распространение в каменноугольном периоде. Рыбы появились в силуре, земноводные - в карбоне.

Мезозойская и кайнозойская эры - последний крупный этап развития структуры земной коры, который отмечен становлением современных океанов и обособлением современных континентов. В начале этапа, в триасе, еще существовала Пангея, но уже в раннем юрском периоде она снова раскололась на Лавразию и Гондвану вследствие возникновения широтного океана Тетис, протянувшегося от Центральной Америки до Индокитая и Индонезии, а на западе и на востоке он смыкался с Тихим океаном (рис. 8.6); этот океан включал и Центральную Атлантику. Отсюда в конце юры процесс раздвига континентов распространился к северу, создав в течение мелового периода и раннего палеогена Северную Атлантику, а начиная с палеогена - Евразийский бассейн Северного Ледовитого океана (Амеразийский бассейн возник раньше как часть Тихого океана). В итоге Северная Америка отделилась от Евразии. В поздней юре началось формирование Индийского океана, и с начала мела стала раскрываться с юга Южная Атлантика. Это означало начало распада Гондваны, существовавшей как единое целое в течение всего палеозоя. В конце мела Северная Атлантика соединилась с Южной, отделив Африку от Южной Америки. Тогда же Австралия отделилась от Антарктиды, а в конце палеогена произошло отделение последней от Южной Америки.

Таким образом, к концу палеогена оформились все современные океаны, обособились все современные континенты и облик Земли приобрел вид, в основном близкий к нынешнему. Однако еще не было современных горных систем.

С позднего палеогена (40 млн лет назад) началось интенсивное горообразование, достигшее кульминации в последние 5 млн лет. Этот этап становления молодых складчато-покровных горных сооружений, образования возрожденных сводово-глыбовых гор выделяют как неотектонический. Фактически неотектонический этап является подэтапом мезозойско-кайнозойского этапа развития Земли, так как именно на этом этапе оформились основные черты современного рельефа Земли, начиная с распределения океанов и континентов.

На этом этапе завершилось формирование основных черт современной фауны и флоры. Мезозойская эра была эрой пресмыкающихся, млекопитающие стали преобладать в кайнозое, а в позднем плиоцене появился человек. В конце раннего мела появились покрытосемянные растения и суша приобрела травяной покров. В конце неогена и антропогене высокие широты обоих полушарий были охвачены мощным материковым оледенением, реликтами которого являются ледниковые шапки Антарктиды и Гренландии. Это было третье крупное оледенение в фанерозое: первое имело место в позднем ордовике, второе - в конце карбона - начале перми; оба они были распространены в пределах Гондваны.

ВОПРОСЫ ДЛЯ САМОКОНТРОЛЯ

    Что такое сфероид, эллипсоид и геоид? Каковы параметры принятого в нашей стране эллипсоида? Зачем он нужен?

    Каково внутреннее строение Земли? На основании чего делается заключение о ее строении?

    Каковы основные физические параметры Земли и как они изменяются с глубиной?

    Каков химический и минералогический состав Земли? На основании чего делается заключение о химическом составе всей Земли и земной коры?

    Какие основные типы земной коры выделяют в настоящее время?

    Что такое гидросфера? Что такое круговорот воды в природе? Какие основные процессы происходят в гидросфере и ее элементах?

    Что такое атмосфера? Каково ее строение? Какие процессы происходят в ее пределах? Что такое погода и климат?

    Дайте определение эндогенных процессов. Какие эндогенные процессы вы знаете? Кратко их охарактеризуйте.

    В чем заключается сущность тектоники литосферных плит? Каковы ее основные положения?

10. Дайте определение экзогенных процессов. В чем основная сущность этих процессов? Какие эндогенные процессы вы знаете? Кратко их охарактеризуйте.

11. Как взаимодействуют эндогенные и экзогенные процессы? Каковы результаты взаимодействия этих процессов? В чем сущность теорий В. Дэвиса и В. Пенка?

    Каковы современные представления о возникновении Земли? Как происходило ее раннее становление как планеты?

    На основании чего производится периодизация геологической истории Земли?

14. Как развивалась земная кора в геологическом прошлом Земли? Каковы основные этапы развития земной коры?

ЛИТЕРАТУРА

    Аллисон А., Палмер Д. Геология. Наука о вечно меняющейся Земле. М., 1984.

    Будыко М.И. Климат в прошлом и будущем. Л., 1980.

    Вернадский В.И. Научная мысль как планетарное явление. М., 1991.

    Гаврилов В.П. Путешествие в прошлое Земли. М., 1987.

    Геологический словарь. Т. 1, 2. М., 1978.

    Городницкий A . M ., Зоненшайн Л.П., Мирлин Е.Г. Реконструкции положения материков в фанерозое. М., 1978.

7. Давыдов Л.К., Дмитриева A.A., Конкина Н.Г. Общая гидрология. Л., 1973.

    Динамическая геоморфология /Под ред. Г.С. Ананьева, Ю.Г. Симонова, А.И. Спиридонова. М., 1992.

    Дэвис В.М. Геоморфологические очерки. М., 1962.

10. Земля. Введение в общую геологию. М., 1974.

11. Климатология / Под ред. O.A. Дроздова, Н.В. Кобышевой. Л., 1989.

    Короновский Н.В., Якушева А.Ф. Основы геологии. М., 1991.

    Леонтьев O.K., Рычагов Г.И. Общая геоморфология. М., 1988.

    Львович М.И. Вода и жизнь. М., 1986.

    Маккавеев Н.И., Чалов P.C. Русловые процессы. М., 1986.

    Михайлов В.Н., Добровольский А.Д. Общая гидрология. М., 1991.

    Монин A.C. Введение в теорию климата. Л., 1982.

    Монин A.C. История Земли. М., 1977.

    Неклюкова Н.П., Душина И.В., Раковская Э.М. и др. География. М., 2001.

    Немков Г.И. и др. Историческая геология. М., 1974.

    Неспокойный ландшафт. М., 1981.

    Общая и полевая геология / Под ред. А.Н. Павлова. Л., 1991.

    Пенк В. Морфологический анализ. М., 1961.

    Перелъман А.И. Геохимия. М., 1989.

    Полтараус Б.В., Кислое A.B. Климатология. М., 1986.

26. Проблемы теоретической геоморфологии /Под ред. Л.Г. Никифорова, Ю.Г. Симонова. М., 1999.

    Сауков A.A. Геохимия. M., 1977.

    Сорохтин О.Г., Ушаков С.А. Глобальная эволюция Земли. М., 1991.

    Ушаков С.А., Ясаманов H.A. Дрейф материков и климат Земли. М., 1984.

    Хаин В.Е., Ломте М.Г. Геотектоника с основами геодинамики. М., 1995.

    Хаин В.Е., Рябухин А.Г. История и методология геологических наук. М., 1997.

    Хромов С.П., Петросянц М.А. Метеорология и климатология. М., 1994.

    Щукин И.С. Общая геоморфология. T.I. M., 1960.

    Экологические функции литосферы / Под ред. В.Т. Трофимова. М., 2000.

    Якушева А.Ф., Хаин В.Е., Славин В.И. Общая геология. М., 1988.

Международный стратиграфический комитет (МСК) принял в конце 2000 г. решение - считать время со второго квартала 2001 г. новым геологическим периодом в составе кайнозойской эры . В связи с этим к нам в редакцию уже стали поступать вопросы:

Зачем это нужно?

Почему таким коротким оказался четвертичный период - всего 1-2 млн лет (по разным оценкам), в то время как все предыдущие периоды длились десятками миллионов лет?

Как будет называться и обозначаться период? (Те, кто прочитал о предлагаемом названии периода, просят его объяснить.)

Почему именно со второго квартала, а не с начала какого-то года?

Постараемся на эти вопросы ответить.

В.И. Вернадский считал, что деятельность человека становится мощным геологическим фактором, соизмеримым с природными факторами. Справедливость этого стала особенно очевидной к концу ХХ в. Перемещение в ходе горных работ огромных масс породы, искусственное вмешательство в геохимический и гидрогеологический режимы земной коры потребовали строгого учета всего этого воздействия. Поэтому МСК решил зафиксировать на какой-то момент состояние земной коры, чтобы начиная с этого момента вести учет ее изменений в результате техногенного воздействия. Логично было бы сделать этим моментом начало 2000 или 2001 г., но к началу 2000 г. не успели составить ясное представление о состоянии недр планеты в целом, а к сентябрю 2000 г. выяснилось, что необходимая документация не успевает и к началу 2001 г. Вот и назначили начало второго квартала.

Анализируя геохронологическую таблицу, сразу замечаешь, что продолжительность эр и периодов с приближением к современности постепенно уменьшается. Писали об общем ускорении геологических процессов, но скорее всего это связано с тем, что о более поздних геологических периодах мы больше знаем, от них осталось больше следов, поэтому периодизацию можно производить с большей дробностью. Что же касается самого последнего времени, то вмешательство человека действительно ускорило многие процессы.

Раньше в геологии магматические и метаморфические породы считали первичными, осадочные - вторичными. Когда в середине XVIII в. были выделены более молодые из осадочных пород, их назвали третичными, в них входили палеоген и неоген, еще с полвека назад составлявшие единую третичную систему, которая образовалась в течение одноименного третичного периода. В 1829 г. были выделены «самые молодые» отложения, их назвали четвертичными; соответственно выделили и четвертичный период; второе его название - антропоген, по-гречески рождающий человека . Поэтому с названием нового периода МСК долго не мучился: не мудрствуя лукаво, период назвали пятеричным , или техногеном (впрочем, здесь оттенок несколько иной: не «рождающий технику», а «рожденный техникой»). Четвертичный период обозначается символом Q (латинское quartus - четвертый). Пятеричный хотели назвать по аналогии quintus (пятый), но вовремя спохватились: пришлось бы обозначать его той же буквой Q, только, наверное, перечеркнутой, как перечеркнутое Р - это палеоген (чтобы не путать с пермью), перечеркнутое С - кембрий (в отличие от карбона); каждый, кто печатал эти символы на пишущей машинке, а наипаче на компьютере, знает, насколько это неудобно. Решили взять за основу не латынь, а английский или немецкий и обозначить период F (five или fu..nf ), благо и прецедент есть: меловой период обозначается буквой К от немецкого Kreide - мел.

Теперь все государства обязаны каждые 5 лет предоставлять в МСК отчет об объемах произведенных горных работ, о том, какие по составу породы, в каком количестве и откуда перемещены, где ими образованы толщи пятеричных, или техногеновых, отложений. В русской терминологии именно так - техногеновых . Отложения и формы рельефа, сформированные человеком, называются антропогенными, а отложения и формы, образованные все равно какими процессами в течение четвертичного периода, или антропогена - антропогеновыми. Отсюда следует, что породы, образовавшиеся в пятеричном периоде естественным путем, без вмешательства человека, тоже можно будет назвать техногеновыми.

Словом, принято очень серьезное решение. Насколько действенными окажутся его результаты, покажет время.

Геологическое время и методы его определения

В изучении Земли как уникального космического объекта идея её эволюции занимает центральное место, поэтому важным количественно-эволюционным параметром является геологическое время . Изучением этого времени занимается специальная наука, получившая название Геохронология – геологическое летоисчисление. Геохронология может быть абсолютной и относительной .

Замечание 1

Абсолютная геохронология занимается определением абсолютного возраста горных пород, который выражается в единицах времени и, как правило, в миллионах лет.

В основе определения этого возраста лежит скорость распада изотопов радиоактивных элементов. Эта скорость является величиной постоянной и от интенсивности физических и химических процессов не зависит. Определение возраста основано на методах ядерной физики. Минералы, содержащие радиоактивные элементы, при формировании кристаллических решеток, образуют закрытую систему. В этой системе происходит накопление продуктов радиоактивного распада. В результате можно определить возраст минерала, если знать скорость этого процесса. Период полураспада радия, например, составляет $1590$ лет, а полный распад элемента произойдет за время в $10$ раз превосходящее период полураспада. Ядерная геохронология имеет свои ведущие методы – свинцовый, калий-аргоновый, рубидиево-стронциевый и радиоуглеродный.

Методы ядерной геохронологии позволили определить возраст планеты, а также продолжительность эр и периодов. Радиологическое измерение времени предложили П. Кюри и Э. Резерфорд в начале $XX$ века.

Относительная геохронология оперирует такими понятиями как «ранний возраст, средний, поздний». Существует несколько разработанных методов определения относительного возраста горных пород. Они объединяются в две группы – палеонтологические и непалеонтологические .

Первые играют основную роль в силу своей универсальности и повсеместного применения. Исключение составляет отсутствие в породах органических остатков. С помощью палеонтологических методов изучаются остатки древних вымерших организмов. Для каждого слоя горных пород характерен свой комплекс органических остатков. В каждом молодом слое остатков высокоорганизованных растений и животных будет больше. Чем выше лежит слой, тем он моложе. Подобная закономерность была установлена англичанином У. Смитом . Ему принадлежит первая геологическая карта Англии, на которой горные породы были разделены по возрасту.

Непалеонтологические методы определения относительного возраста горных пород используются в случаях отсутствия в них органических остатков. Более эффективными тогда будут являться стратиграфический, литологический, тектонический, геофизический методы . С помощью стратиграфического метода можно определить последовательность напластования слоёв при нормальном их залегании, т.е. нижележащие пласты будут более древними.

Замечание 3

Последовательность образования горных пород определяет относительная геохронология, а возраст их в единицах времени определяет уже абсолютная геохронология. Задача геологического времени заключается в определении хронологической последовательности геологических событий.

Геохронологическая таблица

Для определения возраста горных пород и их исследования ученые пользуются различными методами, и с этой целью была составлена специальная шкала. Геологическое время на этой шкале делят на временные отрезки каждому из которых соответствует определенный этап формирования земной коры и развития живых организмов. Шкала получила название геохронологической таблицы, в которой выделяются следующие подразделения: эон, эра, период, эпоха, век, время . Для каждого геохронологического подразделения характерен свой комплекс отложений, который называется стратиграфическим : эонотема, группа, система, отдел, ярус, зона . Группа, например, является стратиграфическим подразделением, а временное геохронологическое подразделение ей соответствующее представляет эра. Исходя из этого, существует две шкалы – стратиграфическая и геохронологическая . Первая шкала используется тогда, когда речь идет об отложениях , потому что в любой промежуток времени на Земле происходили какие-то геологические события. Вторая шкала нужна для определения относительного времени . С момента принятия содержание шкалы менялось и уточнялось.

Наиболее крупными стратиграфическими подразделениями в настоящее время являются эонотемы – архейская, протерозойская, фанерозойская . В геохронологической шкале им отвечают зоны различной длительности. По времени существования на Земле выделяются архейская и протерозойская эонотемы , охватившие почти $80$ % времени. Фанерозойский эон по времени значительно меньше предыдущих эон и охватывает всего $ 570$ млн. лет. Эта ионотема делится на три основные группы – палеозой, мезозой, кайнозой .

Название эонотем и групп имеют греческое происхождение:

  • Археос означает древнейший;
  • Протерос – первичный;
  • Палеос – древний;
  • Мезос – средний;
  • Кайнос – новый.

От слова «зоико с», что значит жизненный, произошло слово «зой ». Исходя из этого, выделяют эры жизни на планете, например, мезозойская эра означает эру средней жизни.

Эры и периоды

Историю Земли по геохронологической таблице делят на пять геологических эр: архейскую, протерозойскую, палеозойскую, мезозойскую, кайнозойскую . В свою очередь эры подразделяются на периоды . Их значительно больше – $12$. Продолжительность периодов различна от $20$-$100$ млн. лет. На свою незавершенность указывает последний четвертичный период кайнозойской эры , его продолжительность всего $1,8$ млн. лет.

Архейская эра. Это время началось уже после формирования земной коры на планете. На Земле к этому времени были горы и в действие вступили процессы эрозии и осадконакопления. Архей длился приблизительно $2$ млрд. лет. Эта эра самая длинная по продолжительности, в течение которой на Земле была широко распространена вулканическая деятельность, шли глубинные поднятия, результатом которых стало образование гор. Большая часть ископаемых под действием высокой температуры, давления, перемещения масс, была уничтожена, но небольшие данные о том времени сохранились. В породах архейской эры в рассеянном виде встречается чистый углерод. Ученые считают, что это измененные останки животных и растений. Если количество графита отражает количество живой материи, то в архее её существовало очень много.

Протерозойская эра . По длительности это вторая эра, охватившая $1$ млрд. лет. На протяжении эры происходило отложение большого количества осадков и одно значительное оледенение. Ледниковые покровы распространялись от экватора до $20$ градуса широты. Ископаемые, найденные в породах этого времени, являются свидетельством существования жизни и её эволюционного развития. В отложениях протерозоя найдены спикулы губок, останки медуз, грибов, водорослей, членистоногих и др.

Палеозойская эра . В этой эре выделяется шесть периодов:

  • Кембрий;
  • Ордовик,
  • Силур;
  • Девон;
  • Карбон или каменноугольный;
  • Пермский или пермь.

Продолжительность палеозоя составляет $370$ млн. лет. За это время появились представители всех типов и классов животных. Не было только птиц и млекопитающих.

Мезозойская эра . Эра делится на три периода:

  • Триас;

Началась эра примерно $230$ млн. лет назад и продолжалась $167$ млн. лет. В течение первых двух периодов – триасового и юрского – большая часть материковых областей поднялась выше уровня моря. Климат триаса сухой и теплый, а в юре он стал еще теплее, но был уже влажный. В штате Аризона есть знаменитый каменный лес, существующий с триасового периода. Правда, от некогда могучих деревьев остались только стволы, бревна и пни. В конце мезозойской эры, а точнее в меловом периоде, на материки происходит постепенное наступление моря. Североамериканский континент в конце мелового периода испытал погружение и в результате воды Мексиканского залива соединились с водами арктического бассейна. Материк был разделен на две части. Завершение мелового периода характеризуется большим поднятием, получившим название альпийского горообразования . В это время появились Скалистые горы, Альпы, Гималаи, Анды. На западе Северной Америки началась интенсивная вулканическая деятельность.

Кайнозойская эра . Это новая эра, которая еще не закончилась и продолжается в настоящее время.

Эру разделили на три периода:

  • Палеоген;
  • Неоген;
  • Четвертичный.

Четвертичный период имеет целый ряд уникальных черт. Это время окончательного формирования современного лика Земли и ледниковых периодов. Стали самостоятельными Новая Гвинея и Австралия, сместившись поближе к Азии. Антарктида осталась на своем месте. Соединились две Америки. Из трех периодов эры наиболее интересным является четвертичный период или антропогеновый . Он продолжается ныне, а был выделен в $1829$ г. бельгийским геологом Ж. Денуайэ . Похолодания меняются потеплениями, но наиболее важной его особенностью является появление человека .

Современный человек проживает в четвертичном периоде кайнозойской эры.

Геологам приходится иметь дело с толщами горных пород, накопившимися за длительную геологическую историю планеты. Необходимо знать, какие из слагающих изучаемую территорию пород моложе, а какие древнее, в какой последовательности они формировались, к каким интервалам геологической истории относится время их образования, а также уметь сопоставлять по возрасту удалённые друг от друга толщи горных пород.

Учение о последовательности формирования и возрасте горных пород называется геохронологией. Различаются методы относительной и методы абсолютной геохронологии.

Относительная геохронология

Методы относительной геохронологии - методы определения относительного возраста горных пород, которые лишь фиксируют последовательность образования горных пород относительно друг друга.

Эти методы базируются на нескольких простых принципах. В 1669 г. Николо Стено сформулировал принцип суперпозиции, гласящий, что в ненарушенном залегании каждый вышележащий слой моложе нижележащего . Обратим внимание, что в определении подчёркивается применимость принципа только в условиях ненарушенного залегания.

Метод определения последовательности образования слоёв, базирующийся на принципе Стено, часто называют стратиграфическим. Стратиграфия - раздел геологии, занимающийся изучением последовательности образования и расчленением толщ осадочных, вулканогенно-осадочных и метаморфических пород, слагающих земную кору.

Следующий важнейший принцип, известный как принцип пересечений , сформулирован Джеймсом Хаттоном. Этот принцип гласит, что любое тело, пересекающее толщу слоев, моложе этих слоев .

Нужно отметить и ещё один важный принцип, гласящий, что время преобразования или деформации пород моложе, чем возраст образования этих пород .

Рассмотрим использование этих принципов на примере толщ осадочных пород, прорванных несколькими секущими магматическими телами.

Последовательность событий следующая. Первоначально происходило накопление осадочных толщ нижнего слоя (1), затем, последовательно накопление вышележащих слоев (2, 3, 4, 5), каждый из которых моложе нижележащего. Накопление осадочных пород в подавляющем большинстве случаев происходит в форме горизонтально лежащих слоев, так первоначально залегали и сформированные слои (1-5). Позднее эти толщи были деформированы (6), и в них внедрилось тело магматических пород 7. Затем, вновь горизонтально, началось накопление вышележащего слоя, залегающего на и внедрившемся магматическом теле. При этом, учитывая, что образующийся слой лежит на выровненной горизонтальной поверхности, очевидно, что его накоплению предшествовало выравнивание территории – её размыв (8). Вслед за размывом территории накопился следующий слой (9). Наиболее молодым образованием является магматическое тело 10.
Подчеркнём, что, рассматривая историю геологического развития территории, разрез которой изображён на рисунке, мы пользовались исключительно относительным временем, определяя лишь последовательность образования тел.

Ещё одна большая группа методов относительной геохронологии – биостратиграфические методы . Эти методы основаны на изучении окаменелостей - ископаемых остатков организмов, заключённых в слоях горных пород: в разновозрастных слоях пород встречаются разные комплексы остатков организмов, характеризующие развитие флоры и фауны в ту или иную геологическую эпоху. В основе методов лежит принцип, сформулированный Уильямом Смитом: одновозрастные осадки содержат одни и те же или близкие остатки ископаемых организмов . Этот принцип дополняется ещё одним важным положением, гласящим, что ископаемые флоры и фауны сменяют друг друга в определённом порядке . Таким образом, в основе всех биостратиграфических методов лежит положение о непрерывности и необратимости изменения органического мира – закон эволюции Ч. Дарвина. Каждый отрезок геологического времени характеризуется определёнными представителями флоры и фауны. Определение возраста толщ горных пород сводится к сравнению найденных в них ископаемых с данными о времени существования этих организмов в геологической истории. В качестве грубой аналогии сущности метода можно привести всем известные методы определения возраста в археологии: если при раскопках обнаружены только каменные орудия труда, то культура относится к каменному веку, присутствие бронзовых орудий даёт основание для её отнесения к бронзовому веку и т.п.

Среди биостратиграфических методов долгое время оставался важнейшим метод руководящих форм. Руководящими формами называют остатки вымерших организмов соответствующие следующим критериям:

  • эти организмы существовали короткий промежуток времени,
  • были распространены на значительной территории,
  • их окаменелости части встречаются и легко определяются.

При определении возраста среди найденных в изучаемом слое ископаемых выбираются наиболее для него характерные, затем они сопоставляются с атласами руководящих форм, описывающими, какому интервалу времени свойственны те или иные формы. Первый из таких атласов был создан ещё в середине XIX века палеонтологом Г. Бронном.

На сегодняшний день основным в биостратиграфии является метод анализа органических комплексов . При применении этого метода вывод об относительном возрасте строится на сведениях обо всём комплексе окаменелостей, а не на находках единичных руководящих форм, что значительно повышает точность.

В ходе геологических исследований стоят задачи не только расчленения толщ по возрасту и отнесения их к какому-либо интервалу геологической истории, но и сопоставления – корреляции – удалённых друг от друга одновозрастных толщ. Наиболее простым методом выявления одновозрастных толщ является прослеживание слоёв на местности от одного обнажения к другому. Очевидно, что этот метод эффективен только в условиях хорошей обнажённости. Более универсальным является биостратиграфический метод сопоставления характера органических остатков в удалённых разрезах – одновозрастные слои обладают одинаковым комплексом окаменелостей. Этот метод позволяет проводить региональную и глобальную корреляцию разрезов.

Принципиальная модель использования окаменелостей для корреляции удалённых разрезов отражена на рисунке.

Одновозрастными являются слои, содержащие одинаковый комплекс окаменелостей

Абсолютная геохронология

Методы абсолютной геохронологии позволяют определить возраст геологических объектов и событий в единицах времени. Среди этих методов наиболее распространены методы изотопной геохронологии, основанные на подсчёте времени распада радиоактивных изотопов, заключенных в минералах (или, например, в остатках древесины или в окаменелых костях животных).

Сущность метода заключена в следующем. В состав некоторых минералов входят радиоактивные изотопы. С момента образования такого минерала в нём протекает процесс радиоактивного распада изотопов, сопровождающийся накоплением продуктов распада. Распад радиоактивных изотопов протекает самопроизвольно, с постоянной скоростью, не зависящей от внешних факторов; количество радиоактивных изотопов убывает в соответствии с экспоненциальным законом. Принимая во внимания постоянство скорости распада, для определения возраста достаточно установить количество оставшегося в минерале радиоактивного изотопа и количество образовавшегося при его распаде стабильного изотопа. Эта зависимость описывается главным уравнением геохронологии :

Для определения возраста используются многие радиоактивные изотопы: 238 U, 235 U, 40 K, 87 Rb, 147 Sm и др. Названия изотопно-геохронологических методов обычно образуются из названий радиоактивных изотопов и конечных продуктов их распада: уран-свинцовый, калий-аргоновый и т.д. Результаты определения возраста геологических объектов выражаются в 106 и 109 лет, или в значениях Международной системы единиц (СИ): Ma и Ga. Эта аббревиатура означает, соответственно, «млн. лет» и « млрд. лет» (от лат. Mega anna – млн. лет, Giga anna – млрд. лет ).

Рассмотрим определение возраста рубидий-стронциевым изохронным методом . В результате распада радиоактивного изотопа 87 Rb происходит образование нерадиоактивного продукта распада – 87 Sr, постоянная распада составляет 1,42*10 -11 лет -1 . Применение изохронного метода предполагает анализ нескольких образцов, взятых из одного и того же геологического объекта, что повышает точность определения возраста и позволяет рассчитать исходный изотопный состав стронция (используемый для определения условий формирования породы).

В ходе лабораторных исследований определяются содержания 87 Rb и 87 Sr, при этом содержание последнего складывается из суммы стронция, изначально содержащегося в минерале (87 Sr) 0 , и стронция, возникшего в процессе радиоактивного распада 87 Rb за период существования минерала:

На практике измеряются не содержания указанных изотопов, а их отношения к стабильному изотопу 86Sr, что даёт более точные результаты. Вследствие этого уравнение приобретает вид

В полученном уравнении имеются два неизвестных: время t и начальное отношение изотопов стронция. Для решения задачи анализируются несколько образцов, результаты наносятся в виде точек на график в координатах 87 Sr/ 86 Sr – 87 Rb/ 86 Sr. В случае корректно отобранных проб все точки ложатся вдоль одной прямой – изохроны (следовательно, имеют один и тот же возраст). Возраст анализируемых образцов рассчитывается по величине угла наклона изохроны, а начальное стронциевое отношение определяется по пересечению изохронной оси 87 Sr/ 86 Sr.

В случае если на графике точки не ложатся на одну линию можно говорить о некорректности подбора проб. Во избежание этого необходимо соблюдать следующие главные условия:

  • образцы должны отбираться из одного геологического объекта (т.е. быть заведомо одновозрастными);
  • в ии следуемых породах не должно быть признаков наложенных преобразований, которые могли привести к перераспределению изотопов;
  • образцы должны обладать одинаковым изотопным составом стронция во время возникновения (недопустимо использование различных пород при построении одной изохроны).

Не останавливаясь на методики определения возраста другими методами, отметим лишь особенности некоторых из них.

В настоящее время наиболее точным считается самарий – неодимовый метод , принятый в качестве стандарта, с которым сравниваются данные других методов. Это связано с тем, что в силу геохимических особенностей данные элементы наименее подвержены влиянию наложенных процессов, часто значительн о искажающих или сводящих на нет результаты определений возраста. Метод основан на распаде изотопа 147 Sm с образованием в качестве конечного продукта распада 144 Nd.

Калий – аргоновый метод основан на распаде радиоактивного изотопа 40 К. Этот метод давно и широко используется для определения возраста всех генетических типов горных пород. Он наиболее эффективен при определении времени формирования осадочных пород и минералов, например, глауконита. Применительно к магматическим и особенно метаморфическим породам, затронутым наложенными изменениями, этот метод часто даёт «омоложенные» датировки, что связано с потерей подвижного аргона.

Радиоуглеродный метод основан на распаде изотопа 14 С, образующегося в верхних слоях атмосферы в результате воздействия космического излучения на атмосферные газы (азот, аргон, кислород). В последствии 14 С, как и нерадиоактивный изотоп углерода, образует углекислый газ СО 2 , и в его составе вовлекается в фотосинтез, оказываясь таким образом в составе растений и, далее, пищевой цепочке передается животным. В гидросферу 14 С попадает в результате обмена СО 2 между атмосферой и Мировым океаном, далее он оказывается в костях и карбонатных раковинах водных обитателей. Интенсивное перемешивание воздушных масс в атмосфере и активное участие углерода в глобальном круговороте химических элементов приводит к выравниванию концентраций 14 С в атмосфере, гидросфере и биосфере. Для живых организмов равновесное состояние достигается при удельной активности 14 С, составляющей 13,56 ± 0.07 распадов в минуту на 1 грамм углерода. Если организм умирает, то прекращается поступление 14С; в результате радиоактивного распада (перехода в нерадиоактивный 14 N) удельная активность 14 С уменьшается. Измерив значение активности в пробе и сопоставив её со значением удельной активности в живой ткани, несложно рассчитать время прекращения жизнедеятельности организма по формуле

///////////////

Радиоуглеродного датирование позволяет определять возраст образцов, содержащих углерод (кости, зубы, раковины, древесина, уголь и т.д.) возрастом до 70 тыс. лет. Это определяет его использование в четвертичной геологии и, особенно, в археологии.

В завершение рассмотрения методов изотопной геологии следует отметить, что, несмотря на получение «абсолютных», выраженных в годах, датировок, мы имеет дело с модельным возрастом – полученные результаты неизбежно содержат некоторую ошибку и, более того, продолжительность астрономического года в ходе длительной геологической истории менялась.

Ещё одна группа методов абсолютной геохронологии представлена сезонно-климатическими методами . Примером такого метода служит варвохронология – метод абсолютной геохронологии, основанный на подсчёте годичных слоёв в «ленточных» отложениях приледниковых озёр. Для приледниковых озёр характерными отложениями служат так называемые «ленточные глины» - чётко слоистые осадки, состоящие из большого числа параллельных лент. Каждая лента – результат годичного цикла осадконакопления в условиях озёр, находящихся большую часть года в замерзшем состоянии. Она всегда состоит из двух слоёв. Верхний – зимний – слой представлен глинами темного цвета (за счёт обогащения органикой), образованного под ледяным покровом; нижний – летний – сложен более грубозернистыми светлоокрашенными осадками (в основном тонкими песками или алевро-глинистыми отложениями), образованными за счёт приносимого в озеро талыми ледниковыми водами материала. Каждая пара таких слойков соответствует 1 году.

Изучение ритмичности ленточных глин позволяет не только определять абсолютный возраст, но и проводить корреляцию расположенных неподалёку друг от друга разрезов, сопоставляя мощности слоёв.

На сходном принципе основан и подсчёт годичных слоёв в осадках соляных озёр, где летом, за счёт повышения испарения, происходит активное осаждение солей.

К недостаткам сезонно-климатических методов следует отнести их неуниверсальность.

Периодизация геологической истории. Cтратиграфическая и геохронологическая шкалы

Оперируя категорией относительного времени необходимо иметь универсальную шкалу периодизации истории. Так, применительно к истории человечества, мы употребляем выражения «до нашей эры», «в эпоху Возрождения», «в XX веке» и т.п., относя какое-либо событие или предмет материальной культуры к определённому временному интервалу. Аналогичный подход принят и в геологии, для этих целей разработаны Международная геохронологическая шкала и Международная стратиграфическая шкала.

Основную информацию о геологической истории Земли несут слои горных пород, в которых, как на страницах каменной летописи, запечатлены происходившие на планете изменения и эволюция органического мира (последняя «запечатлена» в комплексах окаменелостей, содержащихся в разновозрастных слоях). Слои горных пород, занимающие определённое положение в общей последовательности напластований и выделяемые на основании присущих им особенностей (чаще - комплекса ископаемых), являются стратиграфическими подразделениями . Горные породы, слагающие стратиграфические подразделения, формировались на протяжении определённого интервала геологического времени, и, следовательно, отражают эволюцию земной коры и органического мира за этот промежуток времени.

– шкала, показывающая последовательность и соподчинённость стратиграфических подразделений, слагающих земную кору и отражающих пройденные землёй этапы исторического развития. Объектом стратиграфической шкалы являются слои горных пород. Основа современной стратиграфической шкалы была разработана ещё в первой половине XIX века и была принята в 1881 г. на II сессии Международного геологического конгресса в Болонье. Позднее стратиграфическая шкала была дополнена геохронологической шкалой.

Геохронологическая шкала – шкала относительного геологического времени, показывающая последовательность и соподчинённость основных этапов геологической истории Земли и развития жизни на ней. Объектом геохронологической шкалы является геологическое время.

Шкала геологического времени (или геохронометрическая шкала) представляет собой последовательный ряд датировок нижних границ общих стратиграфических подразделений, выраженных в единицах времени (чаще в миллионах лет) и вычисленных с помощью методов абсолютного датирования.

Объектом геохронологической шалы служат геохронологические подразделения – интервалы геологического времени, в течение которого образовались горные породы, входящие в состав данного стратиграфического подразделения.

Всем стратиграфическим подразделениям соответствуют подразделения геохронологической шкалы.

При этом практически все стратиграфические подразделения ранга эонотема - система имеют единые общепринятые международные наименования.

Наиболее крупными стратиграфическими подразделениями являются акротемы и эонотемы. Архейскую и протерозойскую акротемы объединяют под названием «докембрий» (т. е. толщи пород, накопившиеся до кембрийского периода – первого периода фанерозоя) или «криптозой». Рубежом докембрия и фанерозоя служит появление в слоях горных пород остатков скелетных организмов. В докембрии органические остатки редки, поскольку мягкие ткани быстро разрушаются, не успев захорониться. Сам термин «криптозой» образовано при слиянии корней слов «криптос» - скрытый и «зоэ» - жизнь . При расчленении докембрийских толщ на дробные стратиграфические подразделения важнейшую роль имеют методы изотопной геохронологии, поскольку органические остатки редки или вообще отсутствуют, определяются с трудом и, главное, не подвержены быстрой эволюции (однотипные комплексы микрофауны остаются неизменными на протяжении огромных интервалов времени, что не позволяет расчленять толщи по этому признаку).

Эонотемы включают в свой состав эратемы. Эратема , или группа - отложени, образовавшиеся в течение эры ; продолжительность эр в фанерозое составляет первые сотни миллионов лет. Эратемы отражают крупные этапы развития Земли и органического мира. Границы между эратемами соответствуют переломным рубежам в истории развития органического мира. В фанерозое выделяют три эратемы: палеозойскую, мезозойскую и кайнозойскую.

Эратемы, в свою очередь, включают в свой состав системы. Система – это отложения, образовавшиеся в течение периода ; длительность периодов составляет десятки миллионов лет. Одна система от другой отличается комплексами фауны и флоры на уровне надсемейств, семейств и родов. В фанерозое выделяются 12 систем: кембрийская, ордовикская, силурийская, девонская, каменноугольная (карбоновая), пермская, триасовая, юрская, меловая, палеогеновая, неогеновая и четвертичная (антропогеновая). Названия большинства систем происходят от географических названий тех местностей, где они были впервые установлены. Для каждой системы на геологических картах приняты определенный цвет, являющийся международным, и индекс, образованный начальной буквой латинского названия системы.

Отдел - часть системы, соответствующая отложениям, образовавшимся в течение одной эпохи ; длительность эпох обычно составляет первые десятки миллионов лет. Отличия между отделами проявляются в различии фауны и флоры на уровне родов или групп. Названия отделов даны по положению их в системе: нижний, средний, верхний или только нижний и верхний; эпохи соответственно называют ранней, средней, поздней.

В составе отдела выделяются ярусы. Ярус - отложения, образовавшиеся в в течение века ; продолжительность веков составляет несколько миллионов лет.

Наряду с основными подразделениями стратиграфической и геохронологической шкал применяются региональные и местные подразделения.

К региональным стратиграфическим подразделениям относятся горизонт и лона.

Горизонт - основное региональное подразделение стратиграфической шкалы, объединяющее одновозрастные отложения, характеризующиеся определенным комплексом литологических и палеонтологических признаков. Горизонтам присваиваются географические названия, соответствующие местам, где они наиболее хорошо представлены и изучены. Геохронологическим эквивалентом служит время . Например, хапровский горизонт, распространённый на побережье Таганрогского залива Азовского моря, соответствует толще речных песков, сформировавшихся в конце неогенового периода. Стратотип (наиболее представительный разрез стратиграфического горизонта, являющийся его эталоном) этого горизонта расположен у ст. Хапры. Добавим, что термин «горизонт», употребляемый без географического названия, понимается как слой или пачка слоёв, выделяемых на основании каких-либо особенностей (палеонтологических или литологических), то есть является обозначением свободного пользования.

Лона является частью горизонта выделяемой по комплексу фауны и флоры, характерному для данного региона, и отражает определенную фазу развития органического мира данного региона. Название лоны даётся по виду-индексу. Геохронологическим эквивалентом лоны является время.

Местные стратиграфические подразделения представляют собой толщи пород, выделяемые по ряду признаков, в основном по литологическому или петрографическому составу.

Комплекс - самое крупное местное стратиграфическое подразделение. Комплекс имеет очень большую мощность, сложный состав горных пород, сформированных в течение какого-то крупного этапа развития территории. Комплексу присваивается географическое название по характерному месту его развития. Чаще всего комплексы выделяются при расчленении метаморфических толщ.

Серия охватывает достаточно мощную и сложную по составу толщу горных пород для которых имеются какие-то общие признаки: сходные условия образования, преобладание определенных типов горных пород, близкая степень деформаций и метаморфизма и т.д. Серии обычно соответствуют единому крупному циклу развития территории.

Основной единицей из местных стратиграфических подразделений представляет собой является свита. Свита представляет собой толщу пород, образованных в определенной физико-географической обстановке и занимающих установленное стратиграфическое положение в разрезе. Главные особенности свиты - наличие устойчивых литологических признаков на всей площади ее распространения и четкая выраженность границ. Свое название свита получает по географическому местонахождению стратотипа.

Границы местных стратиграфических подразделений часто не совпадают с границами подразделений единой стратиграфической шкалы.

В процессе работы геологом часто приходится использовать также вспомогательные стратиграфические подразделения - толща, пачка, слой, залежь, и т. д., называемые обычно по характерным породам, цвету, литологическим особенностям или по характерным органическим остаткам (толща известняков, слои с Matra fabriana и т.п.).

Привет! В этой статье я хочу Вам рассказать о геохронологической колонке. Это колонка периодов развития Земли. А так же подробнее о каждой эре, благодаря чему можно себе нарисовать картину формирования Земли на протяжении всей ее истории. Какие виды жизни первыми появились, как они менялись, и сколько для этого понадобилось .

Геологическая история Земли делится на большие промежутки — эры, эры делятся на периоды, периоды делятся на эпохи. Такое деление было связано с событиями, происходившими на . Изменение абиотической среды повлияло на эволюцию органического мира на Земле.

Геологические эры Земли, или геохронологическая шкала:

А теперь обо всем подробнее:

Обозначения:
Эры ;
Периоды;
Эпохи.

1. Катархейская эра (от сотворения Земли, около 5 млрд. лет назад, до зарождения жизни);

2. Архейская эра , самая древняя эра (3,5 млрд. – 1,9 млрд. лет назад);

3. Протерозойская эра (1,9 млрд. – 570 млн. лет назад);

Архей и Протерозой еще объединяют в Докембрий. Докембрий охватывает наибольшую часть геологического времени. Образовались , участки суши и моря, происходила активная вулканическая деятельность. Из докембрийских пород образовались щиты всех континентов. Следы жизни обычно встречаются редко.

4. Палеозойская эра (570 млн. – 225 млн. лет назад) с такими периодами :

Кембрийский период (от латинского названия Уэльса) (570 млн. – 480 млн. лет назад);

Переход к кембрию отмечен неожиданным появлением огромного количества ископаемых. Это признак начала Палеозойской эры. В многочисленных мелководных морях процветали морская флора и фауна. Особенно широко были распространены трилобиты.

Ордовикский период (от британского племени ордовиков) (480 млн. – 420 млн. лет назад);

На значительной части Земли был мягкий , большую часть поверхности еще покрывали моря. Продолжалось накопление осадочных пород, происходило горообразование. Существовали рифообразующие . Отмечено изобилие кораллов, губок и моллюсков.

Силурийский период (от британского племени силуров) (420 млн. – 400 млн. лет назад);

Драматические события в истории Земли начались с развитием бесчелюстных рыбообразных (первых позвоночных), которые появились в ордовике. Еще одним значительным событием было появление в позднем силуре первых наземных .

Девонский период (от графства Девоншир в Англии) (400 млн. – 320 млн. лет назад);

В раннем девоне достигли своего пика горообразовательные движения, но в основном это был период скачкообразного развития. На суше расселились первые семенные растения. Отмечено большое разнообразие и количество рыбообразных, развились первые наземные животные — амфибии.

Карбоновый или Каменноугольный период (от обилия угля в пластах ) (320 млн. – 270 млн. лет назад);

Продолжались горообразование, складкообразование, эрозия. В Северной Америке и произошло затопление заболоченных лесов и речных дельт, образовались большие каменноугольные отложения. Южные континенты были охвачены оледенением. Бурно распространялись насекомые, появились первые рептилии.

Пермский период (от российского г. Пермь) (270 млн. – 225 млн. лет назад);

На значительной части Пангеи — суперконтиненте, объединившим все — господствовали условия . Широко распространились рептилии, эволюционировали современные насекомые. Развивалась новая наземная флора, включая хвойные. Исчезли несколько морских видов.

5. Мезозойская эра (225 млн. – 70 млн. лет назад) с такими периодами :

Триасовый период (от трехчастного деления периода, предложенного в Германии) (225 млн. – 185 млн. лет назад);

С наступлением Мезозойской эры Пангея начала распадаться. На суше утвердилось господство хвойных. Отмечено разнообразие среди рептилий, появились первые динозавры и гигантские морские рептилии. Развились примитивные млекопитающие.

Юрский период (от гор в Европе) (185 млн. – 140 млн. лет назад);

Значительная вулканическая деятельность была связанны с образованием Атлантического океана. На суше господствовали динозавры, воздушный океан покорили летающие рептилии и примитивные птицы. Имеются следы первых цветковых растений .

Меловой период (от слова «мел») (140 млн. – 70 млн. лет назад);

Во время максимального расширения морей происходили отложения мела, особенно в Британии. Продолжалось господство динозавров до исчезновения их и других видов в конце периода.

6. Кайнозойская эра (70 млн. лет назад – до нашего времени) с такими периодами и эпохами :

Палеогеновый период (70 млн. – 25 млн. лет назад);

Палеоценовая эпоха («давнейшая часть новой эпохи») (70 млн. – 54 млн. лет назад);
Эоценовая эпоха («заря новой эпохи») (54 млн. – 38 млн. лет назад);
Олигоценовая эпоха («не очень новая») (38 млн. – 25 млн. лет назад);

Неогеновый период (25 млн. – 1 млн. лет назад);

Миоценовая эпоха («сравнительно новая») (25 млн. – 8 млн. лет назад);
Плиоценовая эпоха («очень новая») (8 млн. – 1 млн. лет назад);

Палеоценовый и Неогеновый периоды еще объединяют в Третичный период. С наступлением Кайнозойской эры (новой жизни) происходит скачкообразное распространение млекопитающих. Развились многие крупные виды, хотя многие вымерли. Резко выросло количество цветковых растений . С похолоданием климата появились травянистые растения. Произошло значительное поднятие суши.

Четвертичный период (1 млн. – наше время);

Плейстоценовая эпоха («наиболее новая») (1 млн. – 20 тыс. лет назад);

Голоценовая эпоха («совсем новая эпоха») (20 тыс. лет назад – наше время).

Это последний геологический период, включающий настоящее время. Четыре основных оледенения перемежались с потеплениями. Возросла численность млекопитающих; они приспособились к . Произошло становление человека — будущего властелина Земли.

Также существуют и другие способы деления эр, эпох, периодов, к ним добавлены эоны, и некоторые эпохи еще делятся, вот как на этой таблице, например.

Но эта таблица более сложная, запутанная датировка некоторых эр чисто хронологическая, не основана на стратиграфии. Стратиграфия — это наука об определении относительного геологического возраста осадочных горных пород, расчленении толщ пород и корреляции различных геологических образований.

Такое деление, конечно же, относительно, так как резкого, из сегодня в завтра, разграничения в этих подразделениях не было.

Но все — таки на рубеже соседних эр и периодов преимущественно происходили существенные геологические преобразования: процессы образования гор, перераспределение и морей, изменение климата и т. д.

Каждый подраздел характеризовался конечно же своеобразием флоры и фауны.

, и можно почитать в этой же рубрике.

Таким образом, это основные эры Земли, на которые опираются все ученные 🙂

Последние материалы раздела:

Чудеса Космоса: интересные факты о планетах Солнечной системы
Чудеса Космоса: интересные факты о планетах Солнечной системы

ПЛАНЕТЫ В древние времена люди знали только пять планет: Меркурий, Венера, Марс, Юпитер и Сатурн, только их можно увидеть невооруженным глазом....

Реферат: Школьный тур олимпиады по литературе Задания
Реферат: Школьный тур олимпиады по литературе Задания

Посвящается Я. П. Полонскому У широкой степной дороги, называемой большим шляхом, ночевала отара овец. Стерегли ее два пастуха. Один, старик лет...

Самые длинные романы в истории литературы Самое длинное литературное произведение в мире
Самые длинные романы в истории литературы Самое длинное литературное произведение в мире

Книга длинной в 1856 метровЗадаваясь вопросом, какая книга самая длинная, мы подразумеваем в первую очередь длину слова, а не физическую длину....