Исследовать функцию на монотонность используя определение. Исследование функции на монотонность


План показа: Введение. Введение. 1. Определения возрастающей и убывающей функций. Графики функций. 1. Определения возрастающей и убывающей функций. Графики функций. 2.Алгоритм исследования функции на монотонность. 2.Алгоритм исследования функции на монотонность. 3. Примеры исследования функций на монотонность. 3. Примеры исследования функций на монотонность. Выводы. Выводы.


Введение. Введение. Только с алгеброй начинается строгое математическое учение. Только с алгеброй начинается строгое математическое учение. Н.И. Лобачевский Н.И. Лобачевский Мы изучаем алгебру по комплектам учебников (под рук. Мордковича А.Г.), где учебный материал излагается по схеме: Мы изучаем алгебру по комплектам учебников (под рук. Мордковича А.Г.), где учебный материал излагается по схеме: функция - уравнения – преобразования. функция - уравнения – преобразования. В 7-м и 8-м классах мы учились читать графики, описывая некоторые свойства функций. В 7-м и 8-м классах мы учились читать графики, описывая некоторые свойства функций. В 9-м классе узнали много новых определений и научились применять их для исследования функций. Таким образом, появилась возможность, ответить на многие вопросы без построения графиков функций и, наоборот, по графикам – определить свойства функций. В 9-м классе узнали много новых определений и научились применять их для исследования функций. Таким образом, появилась возможность, ответить на многие вопросы без построения графиков функций и, наоборот, по графикам – определить свойства функций. Замечательным свойством функции является монотонность. Наш показ посвящен этому свойству. Замечательным свойством функции является монотонность. Наш показ посвящен этому свойству.


1.Определения возрастающей и убывающей функций. Функцию y = f(x) называют возрастающей на множестве X D(f), если для любых двух точек x 1 и x 2 множества X, таких, что x 1


3. Алгоритм исследования функции на монотонность. 1. Найти область определения функции y = f(x): множество X D(f). 2. Выбрать произвольные значения аргумента x 1 и x 2 множества X такие, что x 1


4. Примеры исследования функций на монотонность. Исследовать на монотонность функцию: Исследовать на монотонность функцию: 1. y = 2 - 5x; 1. y = 2 - 5x; 2. y = x 3 +4; 2. y = x 3 +4; 3. y = x 3 +2x 2 ; 3. y = x 3 +2x 2 ; 4. y = - 3x 3 - x; 4. y = - 3x 3 - x; 5. y = x 0,5 +x 5 ; 5. y = x 0,5 +x 5 ; 6. y = - x 3 - x 0,5. 6. y = - x 3 - x 0,5.


1. y = 2 – 5x. Решение. Решение. 1. Область определения функции y = 2 – 5x: D(y)= (- ; +). 2. Выберем произвольные значения аргумента x 1 и x 2 из D(y) такие, что x 1 – x 2 ; 2 – 5 x 1 > 2 – 5 x Итак, из x 1 f (x 2), то заданная функция убывает на D(y). – x 2 ; 2 – 5 x 1 > 2 – 5 x 2 3. 5. Итак, из x 1 f (x 2), то заданная функция убывает на D(y).">


2. y = x y = x Решение. Решение. 1. Область определения функции y = x: D(y)= (- ; +). 2. Выберем произвольные значения аргумента x 1 и x 2 из D(y) такие, что x 1


3. y = x 3 +2x 2. Решение. Решение. Область определения функции y = x 3 + 2x 2: D(y)= (- ; +). Область определения функции y = x 3 + 2x 2: D(y)= (- ; +). Выберем произвольные значения аргумента x 1 и x 2 из D(y) такие, что x 1


4. y = – 3x 3 – x. Решение. Решение. 1. Область определения функции y = – 3x 3 – x: D(y)= (- ; +). 2. Выберем произвольные значения аргумента x 1 и x 2 из D(y) такие, что x 1 – x 2 3 ; – x 1 (3x) > – x 2 (3x); – 3x 1 3 – x 1 > – 3x 2 3 – x Итак, из x 1 f (x 2), то заданная функция убывает на D(y). – x 2 3 ; – x 1 (3x 1 2 + 1) > – x 2 (3x 2 2 +1); – 3x 1 3 – x 1 > – 3x 2 3 – x 2. 5. Итак, из x 1 f (x 2), то заданная функция убывает на D(y).">


5. y = x 0,5 +x 5. Решение. Решение. 1. Область определения функции y = x 0,5 +x 5: D(y)= [ 0 ; +). 2. Выберем произвольные значения аргумента x 1 и x 2 из D(y) такие, что x 1


6. y = - x 3 - x 0,5. Решение. Решение. 1. Область определения функции y = – x 3 – x 0,5: D(y)= [ 0; +). 2. Выберем произвольные значения аргумента x 1 и x 2 из D(y) такие, что x 1 – x 2 3 ; – x 1 0,5 > – x 2 0,5 ; –x 1 0,5 (x 1 2,5 + 1) > – x 2 (x 2 2,5 +1); – x 1 3 – x 1 0,5 > – x 2 3 – x 2 0,5. 5. Итак, из x 1 f (x 2), то заданная функция убывает на D(y). – x 2 3 ; – x 1 0,5 > – x 2 0,5 ; –x 1 0,5 (x 1 2,5 + 1) > – x 2 (x 2 2,5 +1); – x 1 3 – x 1 0,5 > – x 2 3 – x 2 0,5. 5. Итак, из x 1 f (x 2), то заданная функция убывает на D(y).">


Выводы. Выводы. Данный материал подготовлен как вводное повторение для урока по теме « Теорема о корне при решении уравнений». Данный материал подготовлен как вводное повторение для урока по теме « Теорема о корне при решении уравнений». Свойство монотонности функции будет в дальнейшем использоваться для решения нестандартных задач. Свойство монотонности функции будет в дальнейшем использоваться для решения нестандартных задач. Если вы хотите научиться плавать, то смело входите в воду, а если хотите научиться решать задачи, то решайте их. Если вы хотите научиться плавать, то смело входите в воду, а если хотите научиться решать задачи, то решайте их. Д.Пойа Д.Пойа

Цели урока:

Образовательные:

  • повторить описание свойств кусочной функции по графику;
  • вывести и усвоить формальные определения возрастания и убывания функции;
  • научить доказывать монотонность функции на области определения.

Воспитательные:

  • воспитание познавательного интереса;
  • воспитание культуры общения;
  • воспитание ответственности за общее дело.

Развивающие:

  • развитие мышления и математической речи через формулировку общих выводов и обобщений.

Ход урока

Эпиграф к уроку:

"Мало иметь хороший ум, главное хорошо его применять"
Р. Декарт.

Домашнее задание к этому уроку: выясните, людям каких профессий по роду своей деятельности приходится читать графики.

Ответы: - кардиолог (кардиограмма)

Экономист (график динамики роста цен, роста стоимости нефти, рост курса $)

Метеоролог (график изменения температуры за год)

Сейсмолог (график колебания активности вулкана, сейсмоактивность данной местности).

Давайте посмотрим, насколько мы владеем этой культурой.

Аукцион "Чтение графика"

Последний ученик, правильно назвавший свойство функции, получает "5"

Дополнительный аукцион:

Кусочек графика какой функции изображен на чертеже?

Сегодня на уроке мы подробно рассмотрим только одно свойство функции - монотонность.

Подберите к прилагательному "монотонный" существительное. О чем говорят "монотонный"?

Движение.

Монотонный - значит какой? Одинаковый, повторяющийся.

С каким свойством функции можно связать словосочетание - монотонное движение? Движение куда?

Итак: монотонность - это возрастание и убывание функции.

В тетради: число, тема урока "Исследование функции на монотонность".

Давайте начнем с того, что мы уже знаем - с графика. Начертите в каждом столбике систему координат и изобразите график произвольной функции, обладающей указанным свойством на всей области определения.

В тетради таблица:

Отложим в сторону тетради. Для дальнейшего изучения свойства, давайте еще раз убедимся, что мы все хорошо понимаем о чем идет речь на уроке. Собираем лото.

Инструкция: На каждой парте таблица и набор карточек.

Работаем в парах. Карточек больше, чем необходимо. Будьте внимательны. Лото собирайте на тетрадке, чтобы потом перевернув, мы прочитали закодированную фразу, правильность которой зависит от слаженной работы каждой пары.

Набор карточек:

После того как каждая пара сложит лото и перевернет таблицу, из получившихся слов получается фраза:

"От живого созерцания к абстрактному мышлению, от него к практике - таков путь познания истины" Ф. Энгельс.

На боковой доске:

Нам сегодня предстоит подняться по этой лесенке, чтобы постигнуть лишь малую крупицу истины знаний, которые накопило человечество на своем пути развития.

Как вы думаете, на какой ступеньке мы находимся? Созерцание, т.е. рассматриваем графики. Продолжаем работу в тетради, в первом столбике таблицы.

Зафиксируйте х 1 , найдите по графику соответствующее у 1 , зафиксируйте х 2 - найдите у 2. Сравните х 1 и х 2 (х 1 < х 2). Что происходит со значением х?

Сравните у 1 и у 2 (у 1 > у 2). Что происходит со значением у?

Вывод: Большему значению х соответствует меньшее значение у. Это и есть определение убывающей функции. Запишите его в таблицу.

Самостоятельная работа.

1 вариант. Проделайте те же операции во втором столбике таблицы.

2 вариант. Заполните третий столбик.

Проверка по доске и в парах обмен результатами.

Итог работы.

Если мы знаем определение, то график для установления вида монотонности нам не нужен. А это значит, что мы поднялись на вторую ступеньку по лестнице познания.

Осталось применить свои знания на практике.

V. Задачник стр.194, № 4, 5 .Один ученик у доски.

Дано: у = 2х - 5

Доказать: у 1 < у 2

Доказательство:

х 1 < х 2 |· 2

2х 1 < 2х 2 | + (- 5)

2х 1 - 5 < 2х 2 - 5

у 1 < у 2 > функция у = 2х - 5 - возрастающая.

Дано: у = 7 - 13х

Доказать: у 1 > у 2

Доказательство: аналогично

Как называются функции, которые мы исследовали? От чего зависит вид монотонности линейной функции? Запишите вывод в таблицу. Используя этот вывод, выполним устно № 6. .

№ 8(а,б) . по вариантам, оформить в тетради по образцу.

Проверка вывода: как называется функция? Какой общей формулой задается функция? От чего зависит вид монотонности? Запишите в таблицу.

Как вы думаете, будет ли меняться вид монотонности, если смещать график вдоль оси Ох или Оу?

№ 8(в,г) устно.

Вспомните графики известных функций. Какая из них одинаково ведет себя на всей области определения? у = . Запишите в таблицу.

V. Наш урок подходит к концу. Закройте тетради. Откройте дневники.

Домашнее задание:

на "3" - выучить определения 10 ., 32 № 1,2;

на "4" + 32 № 11.,

на "5" + задание на карточке.

Построй графики - получишь рисунок. .

"собачка"

х = 8, - 19 у - 3;

у = - х - 11, 0 х 8;

х = 0, - 19 у - 11;

у = - х - 19, - 14 х 0;

х = - 14, - 5 у 1;

у = - х -13, - 14 х - 8;

х = - 8, - 11 у - 5;

у = х - 3, - 8 х 0;

у = - 3, 0 х 8;

у = - 0,6х + 1,2, - 2 х 8;

у = 1, 7 х 10;

у = - 4х - 42,8, 8 х 10;

у = , 5 х 8;

у = - 0,4х + 8, 0 х 2;

у = - 4х + 8, 0 х 2.

"парусник"

Экстремумы и выпуклость.

Асимптоты графика функции

Определение. Критической точкой функции у = f (х ) называется точка в которой производная равна нулю или не существует.

Теорема. Если в промежутке (а; b) производная положительна/отрицательна, то в этом промежутке функция возрастает/убывает.

Теорема. Если при переходе через критическую точку производная меняет знак с «+» на «−» (с «−» на «+»), то − точка максимума (минимума) функции

Определение. Функция называется выпуклой вверх(вниз) в промежутке (а; b), если в этом промежутке точки графика лежат под (над) касательными, построенными в этих точках. Точкой перегиба называется точка графика функции, которая делит его на части с разными направлениями выпуклости.

Пример 2.3.

Исследовать функцию на монотонность и экстремумы, выпуклость.

1. Исследуем функцию на монотонность и экстремумы.

Сделаем рисунок (рис. 2.1 ).

y′′
x
+
y
вып. вниз
вып. вверх
вып. вниз

Рис. 2.2. Исследование функции на выпуклость

Вычислим ординаты точек перегиба графика:

Координаты точек перегиба: (0; 0), (1; −1).

2.32. Исследовать функцию на монотонность и экстремумы:

2.33. Найти наименьшее и наибольшее значенияфункции:

1) на промежутке ;

2) на промежутке [−1; 1];

3) на промежутке [−4; 4];

4) на промежутке [−2; 1].

2.34. Издержки производства С (у. е.) зависят от объема выпускаемой продукции х (ед.): Найти наибольшие издержки производства, если х изменяется на промежутке . Найти значение х , при котором прибыль будет максимальной, если выручка от реализации единицы продукции равна 15 у. е.

2.35. Требуется выделить прямоугольную площадку земли в 512 м 2 , огородить ее и разделить забором на три равные части параллельно одной из сторон площадки. Каковы должны быть размеры площадки, чтобы на ограждение пошло наименьшее количество материала?

2.36. При заданном периметре прямоугольного окна найти такие его размеры, чтобы оно пропускало наибольшее количество света.

2.37. Найти максимум прибыли, если доход R и издержки C определяются формулами: где х − количество реализованного товара.

2.38. Зависимость объема выпуска продукции W от капитальных затрат К определяется функцией Найти интервал изменения К , на котором увеличение капитальных затрат неэффективно.

2.39. Функция издержек имеет вид Доход от реализации единицы продукции равен 200. Найти оптимальное для производителя значение выпуска продукции.

2.40. Зависимость объема выпуска продукции (в денежных единицах) от капитальных затрат определяется функцией Найти интервал значений , на котором увеличение капитальных затрат неэффективно.

2.41. Считается, что увеличение реализации от затрат на рекламу (млн руб.) определяется соотношением Доход от реализации единицы продукции равен 20 тыс. руб. Найти уровень рекламных затрат, при котором фирма получит максимальную прибыль.

2.42. Доход от производства продукции с использованием единиц ресурса составляет величину Стоимость единицы ресурса – 10 ден. ед. Какое количество ресурса следует приобрести, чтобы прибыль была наибольшей?

2.43. Функция издержек имеет вид Доход от реализации единицы продукции равен 50. Найти максимальное значение прибыли, которое может получить производитель.

2.44. Зависимость дохода монополии от количества выпускаемой продукции определяется как Функция издержек на этом промежутке имеет вид Найти оптимальное для монополии значение выпуска продукции.

2.45. Цена на продукцию монополии-производителя устанавливается в соответствии с отношением, идентифицируемым как . При каком значении выпуска продукции доход от ее реализации будет наибольшим?

2.46. Функция издержек имеет следующий вид при при . В настоящий момент уровень выпуска продукции При каком условии на параметр p фирме выгодно уменьшить выпуск продукции, если доход от реализации единицы продукции равен 50?

2.47. Найти точки перегиба и интервалы выпуклости графика функции:

2.48. Найти асимптоты графика функции:

Указание. Вертикальнаяасимптотаимеет уравнение х = а, если хотя бы один из односторонних пределов функции в точке х = а равен ∞.

Наклоннаяасимптота имеет уравнение

2.4.2. Общая схема исследования функции

и построения ее графика

1. Найти область определения функции и установить наличие вертикальных асимптот.

2. Исследовать функцию на четность/нечетность, периодичность.

3. Установить наличие наклонных (горизонтальных) асимптот.

4. Исследовать функцию на монотонность и экстремумы.

5. Найти интервалы выпуклости и точки перегиба графика.

6. Найти точки пересечения графика с осями координат и дополнительные точки, уточняющие график.

2.49. Исследовать функцию и построить ее график:

Контрольные задания

Вариант 1.

Вариант 2.

2. Исследовать функцию и построить ее график:

Вариант 3.

2. Исследовать функцию и построить ее график:

Неопределенный интеграл

Определение. Функция F (x ) называется первообразной функции f (x ) на некотором промежутке, если для всех х из этого промежутка выполняется равенство F′ (x ) = f (x ).

Определение. Неопределенным интегралом от функции f (x ) называется семейство ее первообразных:

где F(x) – некоторая первообразная для f (x );

C – произвольная постоянная.

Основные свойства неопределенного интеграла

Таблица интегралов

3. Частный случай:

Частный случай:

Частный случай

Примеры.

2.50. Найти интегралы:

7) ; 8) ; 9) ; 10) ;

11) ; 12) ; 13) ; 14) .

2.51. Найти интегралы:

1) 2) 3) ; 4) ;

9) 10) 11) 12)

13) ; 14) ; 15) ; 16) ;

2.5.1. Метод замены переменной

в неопределенном интеграле

где – дифференцируемая функция.

Примеры.

2.52. Найти интегралы методом замены переменной:

10) ; 11) 12) ;

13) 14) 15) ;

16) ; 17) ; 18)

Пример 2.4.

2.53. Найти интегралы от рациональных функций.

1) ; 2) ; 3) dx ;

4) ; 5) ; 6) ;

7) 8) 9) dx ;

10) ; 11) ; 12)

Пример 2.5.

2.54. Найти интегралы от иррациональных функций:

1) ; 2) ; 3) ; 4)

2.55. Найти интегралы от тригонометрических функций:

5) ; 6) ; 7) 8)

2.5.2. Метод интегрирования по частям

в неопределенном интеграле

Пусть u= u(x) , v= v(x) – дифференцируемые функции. Тогда справедливо равенство (формула интегрирования по частям ):

Примеры.

2.56. Найти интегралы, применяя интегрирование по частям:

9) 10) 11) 12)

2.57. Найти интегралы:

1) 2) 3) ; 4) ;

5) 6) ; 7) 8) dx ;

9) 10) ; 11) 12)

Определенный интеграл

Определение. Определенным интегралом от функции f (х ) называется предел интегральной суммы:

При этом функция f(х) называется подынтегральной функцией, а и b – нижним и верхним пределами интегрирования соответственно.

Укажем свойства определенного интеграла , которые будут необходимы при решении задач:

Геометрический смысл определенного интеграла : площадь криволинейной трапеции, ограниченной сверху кривой у = f (х ), равна

2.6.1. Правила вычисления определенного интеграла

1. Формула Ньютона–Лейбница:

где F′ (x ) = f (x ).

2. Замена переменной:

где x = – функция, непрерывная вместе с на отрезке – функция, непрерывная на отрезке .

3. Интегрирование по частям:

где u = u(x), v = v(x) – дифференцируемые на функции.

4. Если f(x) нечетная функция, то

5. Если f(x) четная функция, то

Примеры.

2.58. Вычислить интегралы:

1) 2) 3) ; 4)

5) ; 6) 7) ; 8)

9) 10) 11) ; 12)

13) 14) 15) 16)

2.6.2. Геометрические приложения

определенного интеграла

Пример 2.6.

Найти площадь фигуры, ограниченной линиями у = х 2 , х = у 2 .

Графики функций пересекаются в точках (0; 0), (1; 1) (рис. 2.3 ).

Y
X
у = х 2
у = √х

Рис. 2.3. Площадь фигуры

2.59. Найти площадь фигуры, ограниченной графиками функций:

2.60. Найти объем тела, образованного вращением вокруг осей Ох и Оу плоской фигуры, ограниченной линиями:

Указание. Объем тела, образованного вращением плоской фигуры вокруг осей координат Ох и Оу, соответственно равен:

2.61. Найти длину дуги кривой:

1) от х = 0 до х = 1; 2) от х = 0 до х = 1;

3) от точки О(0; 0) до точки А (4; 8).

Указание. Длина дуги кривой при равна


Похожая информация.


В повседневной жизни часто приходится наблюдать множество процессов и явлений, при изучении которых нужно рассматривать самые разнообразные величины. Эти величины могут по-разному зависеть друг от друга. Закон, по которому одна величина зависит от другой, мы назвали функцией. Это одно из основных математических и общенаучных понятий, имеющее практическое применение во многих областях знаний и человеческой деятельности. Поэтому так важно уметь исследовать функции.

В данном видео уроке познакомимся с правилами исследования известных нам функций на монотонность.

Разглядывая графики, мы уже многое можем сказать об их функциях. Например, указать возрастает функция или убывает, как об этом говориться в видео уроке. Однако понятия возрастания и убывания функций в математике имеют свои точные определения, которые и приведены в предложенном нашему вниманию видеоматериале.

Так, чтобы судить о возрастании или убывании функции, зададим некоторый промежуток, на котором будем исследовать функцию. В видео уроке это промежуток Х. Выберем любые два числа, принадлежащие промежутку Х. Пусть это будут числа х 1 и х 2 . Эти два числа являются двумя значениями аргумента, которым соответствуют два значения какой-либо функции f(x 1) и f(x 2). Если получается, что при х 1 > х 2 выполняется неравенство f(x 1) > f(x 2), то наша функция возрастает на промежутке Х.

Другими словами, можно сказать, что функция f(x) называется возрастающей на данном числовом промежутке Х, если большему значению аргумента из этого промежутка соответствует большее значение функции.

Аналогично в видео уроке рассматривается понятие убывающей функции.

Далее в видеоматериале подробно проводится исследование линейной функции y = kx + m. Как известно, эта функция определена на всем множестве действительных чисел, то есть на всей числовой прямой. Даже если не проводить математических доказательств, а просто судить по графику этой функции, видно, что она ведет себя одинаково на всей области определения. Функция либо возрастает (график все время идет вверх), либо убывает (график все время идет вниз). В таких случаях можно не указывать промежуток, а просто сказать, что функция возрастающая или убывающая.

Возрастает или убывает функция y = kx + m, зависит от коэффициента k. Если коэффициент k положительный, то функция y = kx + m возрастает на всей области определения, то есть является возрастающей. Если коэффициент k отрицательный, то функция убывает. Доказательство возрастания или убывания функции y = kx + m основано на свойствах числовых неравенств и рассматривается в видео уроке.

Обычно, если функция только возрастает или только убывает на данном числовом промежутке, то ее называют монотонной на этом промежутке. Функция y = kx + m монотонна на всей своей области определения.

Следующая функция, которая рассматривается в видео уроке квадратичная y = kx 2 . Как и в первом случае, областью ее определения являются все действительные числа x. По графику мы видим, что функция ведет себя неодинаково. К тому же коэффициент k может быть, как положительным, так и отрицательным. Пусть коэффициент k больше нуля. Тогда если аргумент принадлежит промежутку (-∞; 0], то функция убывает. А вот на числовом промежутке }

Последние материалы раздела:

Длины световых волн. Длина волны. Красный цвет – нижняя граница видимого спектра Видимое излучение диапазон длин волн в метрах
Длины световых волн. Длина волны. Красный цвет – нижняя граница видимого спектра Видимое излучение диапазон длин волн в метрах

Соответствует какое-либо монохроматическое излучение . Такие оттенки, как розовый , бежевый или пурпурный образуются только в результате смешения...

Николай Некрасов — Дедушка: Стих
Николай Некрасов — Дедушка: Стих

Николай Алексеевич НекрасовГод написания: 1870Жанр произведения: поэмаГлавные герои: мальчик Саша и его дед-декабрист Очень коротко основную...

Практические и графические работы по черчению б) Простые разрезы
Практические и графические работы по черчению б) Простые разрезы

Рис. 99. Задания к графической работе № 4 3) Есть ли отверстия в детали? Если есть, какую геометрическую форму отверстие имеет? 4) Найдите на...