Химическому элементу степень окисления которого. Как определить степень окисления элемента

В химии описание различных окислительно-восстановительных процессов не обходится без степеней окисления - специальных условных величин, при помощи которых можно определить заряд атома какого-либо химического элемента .

Если представить степень окисления (не путайте с валентностью, так как во многих случаях они не совпадают) как запись в тетради, то мы увидим просто цифры со знаками ноль (0 - в простом веществе), плюс (+) или минус (-) над интересующим нас веществом. Как бы то ни было, они играют огромную роль в химии, а умение определять СО(степень окисления) - это необходимая база в изучении данного предмета, без которой дальнейшие действия смысла не имеют.

Мы используем СО, чтобы описать химические свойства вещества (или отдельного элемента), верного написания его международного названия (понятного для любой страны и нации вне зависимости от используемого языка) и формулы, а также для классификации по признакам.

Степень может быть трёх видов: высшая (для её определения требуется знать, в какой группе находится элемент), промежуточная и низшая (необходимо из числа 8 вычесть номер группы, в которой располагается элемент; естественно, цифра 8 берётся потому, что всего в периодической системе Д.Менделеева 8 групп). Подробно об определении степени окисления и правильном её расставлении будет сказано ниже.

Как определяется степень окисления: постоянная СО

Во-первых, СО может быть переменной или постоянной

Определение постоянной степени окисления не составляет большого труда, поэтому урок лучше начинать именно с неё: для этого необходимо только умение пользоваться ПС (периодической системой). Итак, существует ряд определённых правил:

  1. Нулевая степень. Выше было упомянуто - её имеют исключительно простые вещества: S, O2, Al, K и так далее.
  2. Если молекулы нейтральны (иными словами, они не имеют электрического заряда), то в сумме их степени окисления равняются нулю. Однако в случае с ионами сумма должна равняться заряду самого иона.
  3. В I, II, III группах таблицы Менделеева расположены преимущественно металлы. Элементы этих групп имеют положительный заряд, номер которого соответствует номеру группы (+1, +2, или +3). Пожалуй, большое исключение составляет железо (Fe) - его СО бывает как +2, так и +3.
  4. СО водорода (H) чаще всего бывает +1 (при взаимодействии с неметаллами: HCl, H2S), но в отдельных случаях мы ставим -1 (при образовании гидридов в соединениях с металлами: KH, MgH2).
  5. СО кислорода (O) +2. Соединения с данным элементом образуют оксиды (MgO, Na2O, H20 - вода). Однако есть и случаи, когда кислород имеет степень окисления -1 (при образовании пероксидов) или и вовсе выступает в роли восстановителя (в соединении с фтором F, потому что окислительные свойства кислорода слабее).

На основе данных сведений расставляются степени окисления во множестве сложных веществ, описываются окислительно-восстановительные реакции и прочее, однако об этом позже.

Переменная СО

Некоторые химические элементы отличаются тем, что имеют не одну степень окисления и меняют её в зависимости от того, в какой формуле стоят. Согласно правилам сумма всех степеней также должна равняться нулю, но для её нахождения необходимо проделать некоторые вычисления. В письменном варианте это выглядит как просто алгебраическое уравнение, но со временем мы «набиваем руку», и не составляет труда составить и быстро выполнить весь алгоритм действий мысленно.

Разобраться на словах будет не так легко, и лучше сразу перейти к практике:

HNO3 - в данной формуле определить степень окисления азота (N). В химии мы и читаем названия элементов, и подходим к расставлению степеней окисления тоже с конца. Итак, известно, что СО кислорода -2. Мы должны умножить степень окисления на коэффициент справа (если он есть): -2*3=-6. Далее переходим к водороду (H): его СО в уравнении будет +1. Значит, чтобы в сумме СО давали ноль, нужно прибавить 6. Проверка: +1+6-7=-0.

Дополнительные упражнения можно будет найти в конце, но прежде всего нам требуется определить, какие элементы имеют переменную степень окисления. В принципе, все элементы, не считая первых трёх групп, меняют свои степени. Наиболее ярким примером служат галогены (элементы VII группы, не считая фтора F), IV группа и благородные газы. Ниже вы увидите перечень некоторых металлов и неметаллов с переменной степенью:

  • H (+1, -1);
  • Be (-3, +1, +2);
  • B (-1, +1, +2, +3);
  • C (-4, -2, +2, +4);
  • N (-3, -1, +1, +3, +5);
  • O (-2, -1);
  • Mg (+1, +2);
  • Si (-4, -3, -2, -1, +2, +4);
  • P (-3, -2, -1, +1, +3, +5);
  • S (-2, +2, +4, +6);
  • Cl (-1, +1, +3, +5, +7).

Это лишь небольшое количество элементов. Чтобы научиться определять СО, требуется изучение и практика, однако это не значит, что нужно заучивать все постоянные и переменные СО наизусть: просто запомните, что последние встречаются значительно чаще. Зачастую немалую роль играет коэффициент и то, какое вещество представлено - к примеру, в сульфидах отрицательную степень принимает сера (S), в оксидах - кислород (O), в хлоридах - хлор (Cl). Следовательно, в этих солях положительную степень принимает другой элемент (и называется в данной ситуации восстановителем).

Решение задач на определение степени окисления

Теперь мы подошли к самому главному - практике. Попробуйте выполнить следующие задания сами, а затем посмотрите разборку решения и сверьте ответы:

  1. K2Cr2O7 - найти степень хрома.
    СО у кислорода -2, у калия +1, а у хрома обозначим пока что как неизвестную переменную x. Суммарное значение равняется 0. Следовательно, составим уравнение: +1*2+2*x-2*7=0. После решения получаем ответ 6. Сделаем проверку - всё совпало, значит, задание решено.
  2. H2SO4 - найти степень серы.
    По той же концепции составляем уравнение: +2*1+x-2*4=0. Далее: 2+x-8=0.x=8-2; x=6.

Краткое заключение

Чтобы научиться определять степень окисления самостоятельно, вам нужно не только уметь составлять уравнения, но и основательно взяться за изучение свойств элементов различных групп, вспомнить уроки алгебры, составляя и решая уравнения с неизвестной переменной.
Не забывайте, что в правилах есть свои исключения и о них нельзя забывать: речь идёт об элементах с переменной СО. Также для решения многих задач и уравнений необходимо умение расставлять коэффициенты (и знать, с какой целью это делается).

Редакция "сайт"

Часть I

1. Степень окисления (с. о.) - это условный заряд атомов химического элемента в сложном веществе, вычисленный на основе предположения, что оно состоит из простых ионов.

Следует знать!

1) В соединениях с. о. водорода = +1, кроме гидридов .
2) В соединениях с. о. кислорода = -2, кроме пероксидов и фторидов
3) Степень окисления металлов всегда положительна.

Для металлов главных подгрупп первых трёх групп с. о. постоянна:
металлы IA группы - с. о. = +1,
металлы IIA группы - с. о. = +2,
металлы IIIA группы - с. о. = +3.
4) У свободных атомов и простых веществ с. о. = 0.
5) Суммарная с. о. всех элементов в соединении = 0.

2. Способ образования названий двухэлементных (бинарных) соединений.



4. Дополните таблицу «Названия и формулы бинарных соединений».


5. Определите степень окисления выделенного шрифтом элемента сложного соединения.


Часть II

1. Определите степени окисления химических элементов в соединениях по их формулам. Запишите названия этих веществ.

2. Разделите вещества FeO, Fe2O3, CaCl2, AlBr3, CuO, K2O, BaCl2, SO3 на две группы. Запишите названия веществ, указав степени окисления.


3. Установите соответствие между названием и степенью окисления атома химического элемента и формулой соединения.

4. Составьте формулы веществ по названию.

5. Сколько молекул содержится в 48 г оксида серы (IV)?


6. С помощью Интернета и других источников информации подготовьте сообщение о применении какого-либо бинарного соединения по следующему плану:
1) формула;
2) название;
3) свойства;
4) применение.

H2O вода, оксид водорода.
Вода при обычных условиях жидкость, без цвета, запаха, в толстом слое – голубая. Температура кипения около 100⁰С. Является хорошим растворителем. Состоит молекула воды из двух атомов водорода и одного атома кислорода, это его качественный и количественный состав. Это сложное вещество, для него характерны следующие химические свойства: взаимодействие со щелочными металлами, щелочноземельными металлами. Реакции обмена с водой называются гидролизом. Эти реакции имеют большое значение в химии.

7. Степень окисления марганца в соединении К2МnO4 равна:
3) +6

8. Наименьшую степень окисления хром имеет в соединении, формула которого:
1) Сг2O3

9. Максимальную степень окисления хлор проявляет в соединении, формула которого:
3) Сl2O7

Во многих школьных учебниках и пособиях учат составлять формулы по валентностям, даже для соединений с ионными связями. Для упрощения процедуры составления формул это, на наш взгляд, допустимо. Но нужно понимать, что это не совсем корректно ввиду вышеизложенной причины.

Более универсальным понятием является понятие о степени окисления. По значениям степеней окисления атомов так же как и по значениям валентности можно составлять химические формулы и записывать формульные единицы.

Степень окисления - это условный заряд атома в частице (молекуле, ионе, радикале), вычисленный в приближении того, что все связи в частице являются ионными.

Прежде чем определять степени окисления, необходимо сравнить электроотрицательности связуемых атомов. Атом с большим значением электроотрицательности имеет отрицательную степень окисления, а с меньшим положительную.


С целью объективного сравнения значений электроотрицательности атомов при расчёте степеней окисления, в 2013 году IUPAC дал рекомендацию использовать шкалу Аллена.

* Так, например, по шкале Аллена электроотрицательность азота 3,066, а хлора 2,869.

Проиллюстрируем данное выше определение на примерах. Составим структурную формулу молекулы воды.

Ковалентные полярные связи O-H обозначены синим цветом.

Представим, что обе связи являются не ковалентными, а ионными. Если бы они были ионными, то с каждого атома водорода на более электроотрицательный атом кислорода перешло бы по одному электрону. Обозначим эти переходы синими стрелками.

*В этом примере, стрелка служит для наглядной иллюстрации полного перехода электронов, а не для иллюстрации индуктивного эффекта.

Легко заметить, что число стрелок показывает количество перешедших электронов, а их направление - направление перехода электронов.

На атом кислорода направлено две стрелки, это значит, что к атому кислорода переходит два электрона: 0 + (-2) = -2. На атоме кислорода образуется заряд равный -2. Это и есть степень окисления кислорода в молекуле воды.

С каждого атома водорода уходит по одному электрону: 0 - (-1) = +1. Значит, атомы водорода имеют степень окисления равную +1.

Сумма степеней окисления всегда равняется общему заряду частицы.

Например, сумма степеней окисления в молекуле воды равна: +1(2) + (-2) = 0. Молекула - электронейтральная частица.

Если мы вычисляем степени окисления в ионе, то сумма степеней окисления, соответственно, равна его заряду.

Значение степени окисления принято указывать в верхнем правом углу от символа элемента. Причём, знак пишут впереди числа . Если знак стоит после числа - то это заряд иона.


Например, S -2 - атом серы в степени окисления -2, S 2- - анион серы с зарядом -2.

S +6 O -2 4 2- - значения степеней окисления атомов в сульфат-анионе (заряд иона выделен зелёным цветом).

Теперь рассмотрим случай, когда соединение имеет смешанные связи: Na 2 SO 4 . Связь между сульфат-анионом и катионами натрия - ионная, связи между атомом серы и атомами кислорода в сульфат-ионе - ковалентные полярные. Запишем графическую формулу сульфата натрия, а стрелками укажем направление перехода электронов.

*Структурная формула отображает порядок ковалентных связей в частице (молекуле, ионе, радикале). Структурные формулы применяют только для частиц с ковалентными связями. Для частиц с ионными связями понятие структурной формулы не имеет смысла. Если в частице имеются ионные связи, то применяют графическую формулу.

Видим, что от центрального атома серы уходит шесть электронов, значит степень окисления серы 0 - (-6) = +6.

Концевые атомы кислорода принимают по два электрона, значит их степени окисления 0 + (-2) = -2

Мостиковые атомы кислорода принимают по два электрона, их степень окисления равна -2.

Определить степени окисления возможно и по структурно-графической формуле, где черточками указывают ковалентные связи, а у ионов указывают заряд.

В этой формуле мостиковые атомы кислорода уже имеют единичные отрицательные заряды и к ним дополнительно приходит по электрону от атома серы -1 + (-1) = -2, значит их степени окисления равны -2.


Степень окисления ионов натрия равна их заряду, а т.е. +1.

Определим степени окисления элементов в надпероксиде (супероксиде) калия. Для этого составим графическую формулу супероксида калия, стрелочкой покажем перераспределение электронов. Связь O-O является ковалентной неполярной, поэтому в ней перераспределение электронов не указывается.

* Надпероксид-анион является ион-радикалом. Формальный заряд одного атома кислорода равен -1, а другого, с неспаренным электроном, 0.

Видим, что степень окисления калия равна +1. Степень окисления атома кислорода, записанного в формуле напротив калия, равна -1. Степень окисления второго атома кислорода равна 0.

Точно также можно определить степени окисления и по структурно-графической формуле.

В кружочках указаны формальные заряды иона калия и одного из атомов кислорода. При этом значения формальных зарядов совпадают со значениями степеней окисления.

Так как оба атома кислорода в надпероксид-анионе имеют разные значения степени окисления, то можно вычислить средне-арифметическую степень окисления кислорода.


Она будет равна / 2 = - 1/2 = -0,5.

Значения среднеарифметических степеней окисления обычно указывают в брутто-формулах или формульных единицах, чтобы показать что сумма степеней окисления равна общему заряду системы.

Для случая с надпероксидом: +1 + 2(-0,5) = 0

Легко определить степени окисления используя электронно-точечные формулы, в которых указывают точками неподеленные электронные пары и электроны ковалентных связей.

Кислород - элемент VIА - группы, следовательно в его атоме 6 валентных электронов. Представим, что в молекуле воды связи ионные, в этом случае атом кислорода получил бы октет электронов.

Степень окисления кислорода соответственно равна: 6 - 8 = -2.

А атомов водорода: 1 - 0 = +1

Умение определять степени окисления по графическим формулам бесценно для понимания сущности этого понятия, так же это умение потребуется в курсе органической химии. Если же мы имеем дело с неорганическими веществами, то необходимо уметь определять степени окисления по молекулярным формулам и формульным единицам.

Для этого прежде всего нужно понять, что степени окисления бывают постоянными и переменными. Элементы, проявляющие постоянную степень окисления необходимо запомнить.

Любой химический элемент характеризуется высшей и низшей степенями окисления.

Низшая степень окисления - это заряд, который приобретает атом в результате приёма максимального количества электронов на внешний электронный слой.


Ввиду этого, низшая степень окисления имеет отрицательное значение, за исключением металлов, атомы которых электроны никогда не принимают ввиду низких значений электроотрицательности. Металлы имеют низшую степень окисления равную 0.


Большинство неметаллов главных подгрупп старается заполнить свой внешний электронный слой до восьми электронов, после этого атом приобретает устойчивую конфигурацию (правило октета ). Поэтому, чтобы определить низшую степень окисления, необходимо понять сколько атому не хватает валентных электронов до октета.

Например, азот - элемент VА группы, это значит, что в атоме азота пять валентных электронов. До октета атому азота не хватает трёх электронов. Значит низшая степень окисления азота равна: 0 + (-3) = -3

Видеокурс «Получи пятерку» включает все темы, необходимые для успешной сдачи ЕГЭ по математике на 60-65 баллов. Полностью все задачи 1-13 Профильного ЕГЭ по математике. Подходит также для сдачи Базового ЕГЭ по математике. Если вы хотите сдать ЕГЭ на 90-100 баллов, вам надо решать часть 1 за 30 минут и без ошибок!

Курс подготовки к ЕГЭ для 10-11 класса, а также для преподавателей. Все необходимое, чтобы решить часть 1 ЕГЭ по математике (первые 12 задач) и задачу 13 (тригонометрия). А это более 70 баллов на ЕГЭ, и без них не обойтись ни стобалльнику, ни гуманитарию.

Вся необходимая теория. Быстрые способы решения, ловушки и секреты ЕГЭ. Разобраны все актуальные задания части 1 из Банка заданий ФИПИ. Курс полностью соответствует требованиям ЕГЭ-2018.

Курс содержит 5 больших тем, по 2,5 часа каждая. Каждая тема дается с нуля, просто и понятно.

Сотни заданий ЕГЭ. Текстовые задачи и теория вероятностей. Простые и легко запоминаемые алгоритмы решения задач. Геометрия. Теория, справочный материал, разбор всех типов заданий ЕГЭ. Стереометрия. Хитрые приемы решения, полезные шпаргалки, развитие пространственного воображения. Тригонометрия с нуля - до задачи 13. Понимание вместо зубрежки. Наглядное объяснение сложных понятий. Алгебра. Корни, степени и логарифмы, функция и производная. База для решения сложных задач 2 части ЕГЭ.

Умение находить степень окисления химических элементов является необходимым условием для успешного решения химический уравнений, описывающих окислительно-восстановительные реакции. Без него вы не сможете составить точную формулу вещества, получившегося в результате реакции между различными химическими элементами. В результате решение химических задач, построенных на подобных уравнениях, будет либо невозможным, либо ошибочным.

Понятие степени окисления химического элемента
Степень окисления – это условная величина, с помощью которой принято описывать окислительно-восстановительные реакции. Численно она равна количеству электронов, которое отдает атом приобретающий положительный заряд, или количеству электронов, которое присоединяет к себе атом, приобретающий отрицательный заряд.

В окислительно-восcтановительных реакциях понятие степень окисления используется для определения химических формул соединений элементов, получающихся в результате взаимодействия нескольких веществ.

На первый взгляд может показаться, что степень окисления эквивалентна понятию валентности химического элемента, но это не так. Понятие валентность используется для количественного выражения электронного взаимодействия в ковалентных соединениях, то есть в соединениях, образованных за счет образования общих электронных пар. Степень окисления используется для описания реакций, которые сопровождаются отдачей или присоединением электронов.

В отличии от валентности, являющейся нейтральной характеристикой, степень окисления может иметь положительное, отрицательное, или нулевое значение. Положительное значение соответствует числу отданных электронов, а отрицательная числу присоединенных. Нулевое значение означает, что элемент находится либо в форме простого вещества, либо он был восстановлен до 0 после окисления, либо окислен до нуля после предшествующего восстановления.

Как определить степень окисления конкретного химического элемента
Определение степени окисления для конкретного химического элемента подчиняется следующим правилам:

  1. Степень окисления простых веществ всегда равна нулю.
  2. Щелочные металлы, которые находятся в первой группе периодической таблицы, имеют степень окисления +1.
  3. Щелочноземельные металлы, занимающие в периодической таблице вторую группу, имеют степень окисления +2.
  4. Водород в соединениях с различными неметаллами всегда проявляет степень окисления +1, а в соединениях с металлами +1.
  5. Степень окисления молекулярного кислорода во всех соединениях, рассматриваемых в школьном курсе неорганической химии, равна -2. Фтора -1.
  6. При определении степени окисления в продуктах химических реакций исходят из правила электронейтральности, в соответствии с которым сумма степеней окисления различных элементов, входящих в состав вещества, должна быть равна нулю.
  7. Алюминий во всех соединениях проявляет степень окисления равную +3.
Дальше, как правило, начинаются сложности, так как остальные химические элементы демонстрируют и проявляют переменную степень окисления в зависимости от типов атомов других веществ, участвующих в соединении.

Различают высшую, низшую и промежуточную степени окисления. Высшая степень окисления, как и валентность, соответствует номеру группы химического элемента в периодической таблице, но имеет при этом положительное значение. Низшая степень окисления численно равна разности между числом 8 группой элемента. Промежуточной степенью окисления будет любой число в диапазоне от низшей степени окисления до высшей.

Чтобы помочь вам сориентироваться в многообразии степеней окисления химических элементов предлагаем вашему вниманию следующую вспомогательную таблицу. Выберите в ней интересующий вас элемент и вы получите значения его возможных степеней окисления. В скобках будут указаны редко встречающиеся значения.

Последние материалы раздела:

Чудеса Космоса: интересные факты о планетах Солнечной системы
Чудеса Космоса: интересные факты о планетах Солнечной системы

ПЛАНЕТЫ В древние времена люди знали только пять планет: Меркурий, Венера, Марс, Юпитер и Сатурн, только их можно увидеть невооруженным глазом....

Реферат: Школьный тур олимпиады по литературе Задания
Реферат: Школьный тур олимпиады по литературе Задания

Посвящается Я. П. Полонскому У широкой степной дороги, называемой большим шляхом, ночевала отара овец. Стерегли ее два пастуха. Один, старик лет...

Самые длинные романы в истории литературы Самое длинное литературное произведение в мире
Самые длинные романы в истории литературы Самое длинное литературное произведение в мире

Книга длинной в 1856 метровЗадаваясь вопросом, какая книга самая длинная, мы подразумеваем в первую очередь длину слова, а не физическую длину....