Функция распределения f x y. Определение функции распределения

Определение функции случайных величин. Функция дискретного случайного аргумента и ее числовые характеристики. Функция непрерывного случайного аргумента и ее числовые характеристики. Функции двух случайных аргументов. Определение функции распределения вероятностей и плотности для функции двух случайных аргументов.

Закон распределения вероятностей функции одной случайной величины

При решении задач, связанных с оценкой точности работы различных автоматических систем, точности производства отдельных элементов систем и др., часто приходится рассматривать функции одной или нескольких случайных величин. Такие функции также являются случайными величинами. Поэтому при решении задач необходимо знать законы распределения фигурирующих в задаче случайных величин. При этом обычно известны закон распределения системы случайных аргументов и функциональная зависимость.

Таким образом, возникает задача, которую можно сформулировать так.

Дана система случайных величин (X_1,X_2,\ldots,X_n) , закон распределения которой известен. Рассматривается некоторая случайная величина Y как функция данных случайных величин:

Y=\varphi(X_1,X_2,\ldots,X_n).

Требуется определить закон распределения случайной величины Y , зная вид функций (6.1) и закон совместного распределения ее аргументов.

Рассмотрим задачу о законе распределения функции одного случайного аргумента

Y=\varphi(X).

\begin{array}{|c|c|c|c|c|}\hline{X}&x_1&x_2&\cdots&x_n\\\hline{P}&p_1&p_2&\cdots&p_n\\\hline\end{array}

Тогда Y=\varphi(X) также дискретная случайная величина с возможными значениями . Если все значения y_1,y_2,\ldots,y_n различны, то для каждого k=1,2,\ldots,n события \{X=x_k\} и \{Y=y_k=\varphi(x_k)\} тождественны. Следовательно,

P\{Y=y_k\}=P\{X=x_k\}=p_k


и искомый ряд распределения имеет вид

\begin{array}{|c|c|c|c|c|}\hline{Y}&y_1=\varphi(x_1)&y_2=\varphi(x_2)&\cdots&y_n=\varphi(x_n)\\\hline{P}&p_1&p_2&\cdots&p_n\\\hline\end{array}

Если же среди чисел y_1=\varphi(x_1),y_2=\varphi(x_2),\ldots,y_n=\varphi(x_n) есть одинаковые, то каждой группе одинаковых значений y_k=\varphi(x_k) нужно отвести в таблице один столбец и соответствующие вероятности сложить.

Для непрерывных случайных величин задача ставится так: зная плотность распределения f(x) случайной величины X , найти плотность распределения g(y) случайной величины Y=\varphi(X) . При решении поставленной задачи рассмотрим два случая.

Предположим сначала, что функция y=\varphi(x) является монотонно возрастающей, непрерывной и дифференцируемой на интервале (a;b) , на котором лежат все возможные значения величины X . Тогда обратная функция x=\psi(y) существует, при этом являясь также монотонно возрастающей, непрерывной и дифференцируемой. В этом случае получаем

G(y)=f\bigl(\psi(y)\bigr)\cdot |\psi"(y)|.

Пример 1. Случайная величина X распределена с плотностью

F(x)=\frac{1}{\sqrt{2\pi}}e^{-x^2/2}

Найти закон распределения случайной величины Y , связанной с величиной X зависимостью Y=X^3 .

Решение. Так как функция y=x^3 монотонна на промежутке (-\infty;+\infty) , то можно применить формулу (6.2). Обратная функция по отношению к функции \varphi(x)=x^3 есть \psi(y)=\sqrt{y} , ее производная \psi"(y)=\frac{1}{3\sqrt{y^2}} . Следовательно,

G(y)=\frac{1}{3\sqrt{2\pi}}e^{-\sqrt{y^2}/2}\frac{1}{\sqrt{y^2}}

Рассмотрим случай немонотонной функции. Пусть функция y=\varphi(x) такова, что обратная функция x=\psi(y) неоднозначна, т. е. одному значению величины y соответствует несколько значений аргумента x , которые обозначим x_1=\psi_1(y),x_2=\psi_2(y),\ldots,x_n=\psi_n(y) , где n - число участков, на которых функция y=\varphi(x) изменяется монотонно. Тогда

G(y)=\sum\limits_{k=1}^{n}f\bigl(\psi_k(y)\bigr)\cdot |\psi"_k(y)|.

Пример 2. В условиях примера 1 найти распределение случайной величины Y=X^2 .

Решение. Обратная функция x=\psi(y) неоднозначна. Одному значению аргумента y соответствуют два значения функции x


Применяя формулу (6.3), получаем:

\begin{gathered}g(y)=f(\psi_1(y))|\psi"_1(y)|+f(\psi_2(y))|\psi"_2(y)|=\\\\=\frac{1}{\sqrt{2\pi}}\,e^{-\left(-\sqrt{y^2}\right)^2/2}\!\left|-\frac{1}{2\sqrt{y}}\right|+\frac{1}{\sqrt{2\pi}}\,e^{-\left(\sqrt{y^2}\right)^2/2}\!\left|\frac{1}{2\sqrt{y}}\right|=\frac{1}{\sqrt{2\pi{y}}}\,e^{-y/2}.\end{gathered}

Закон распределения функции двух случайных величин

Пусть случайная величина Y является функцией двух случайных величин, образующих систему (X_1;X_2) , т. е. Y=\varphi(X_1;X_2) . Задача состоит в том, чтобы по известному распределению системы (X_1;X_2) найти распределение случайной величины Y .

Пусть f(x_1;x_2) - плотность распределения системы случайных величин (X_1;X_2) . Введем в рассмотрение новую величину Y_1 , равную X_1 , и рассмотрим систему уравнений

Будем полагать, что эта система однозначно разрешима относительно x_1,x_2


и удовлетворяет условиям дифференцируемости.

Плотность распределения случайной величины Y

G_1(y)=\int\limits_{-\infty}^{+\infty}f(x_1;\psi(y;x_1))\!\left|\frac{\partial\psi(y;x_1)}{\partial{y}}\right|dx_1.

Заметим, что рассуждения не изменяются, если введенную новую величину Y_1 положить равной X_2 .

Математическое ожидание функции случайных величин

На практике часто встречаются случаи, когда нет особой надобности полностью определять закон распределения функции случайных величин, а достаточно только указать его числовые характеристики. Таким образом, возникает задача определения числовых характеристик функций случайных величин помимо законов распределения этих функций.

Пусть случайная величина Y является функцией случайного аргумента X с заданным законом распределения

Y=\varphi(X).

Требуется, не находя закона распределения величины Y , определить ее математическое ожидание

M(Y)=M[\varphi(X)].

Пусть X - дискретная случайная величина, имеющая ряд распределения

\begin{array}{|c|c|c|c|c|}\hline{x_i}&x_1&x_2&\cdots&x_n\\\hline{p_i}&p_1&p_2&\cdots&p_n\\\hline\end{array}

Составим таблицу значений величины Y и вероятностей этих значений:

\begin{array}{|c|c|c|c|c|}\hline{y_i=\varphi(x_i)}&y_1=\varphi(x_1)&y_2=\varphi(x_2)&\cdots&y_n=\varphi(x_n)\\\hline{p_i}&p_1&p_2&\cdots&p_n\\\hline\end{array}

Эта таблица не является рядом распределения случайной величины Y , так как в общем случае некоторые из значений могут совпадать между собой и значения в верхней строке не обязательно идут в возрастающем порядке. Однако математическое ожидание случайной величины Y можно определить по формуле

M[\varphi(X)]=\sum\limits_{i=1}^{n}\varphi(x_i)p_i,


так как величина, определяемая формулой (6.4), не может измениться от того, что под знаком суммы некоторые члены будут заранее объединены, а порядок членов изменен.

Формула (6.4) не содержит в явном виде закон распределения самой функции \varphi(X) , а содержит только закон распределения аргумента X . Таким образом, для определения математического ожидания функции Y=\varphi(X) вовсе не требуется знать закон распределения функции \varphi(X) , а достаточно знать закон распределения аргумента X .

Для непрерывной случайной величины математическое ожидание вычисляется по формуле

M[\varphi(X)]=\int\limits_{-\infty}^{+\infty}\varphi(x)f(x)\,dx,


где f(x) - плотность распределения вероятностей случайной величины X .

Рассмотрим случаи, когда для нахождения математического ожидания функции случайных аргументов не требуется знание даже законов распределения аргументов, а достаточно знать только некоторые их числовые характеристики. Сформулируем эти случаи в виде теорем.

Теорема 6.1. Математическое ожидание суммы как зависимых, так и независимых двух случайных величин равно сумме математических ожиданий этих величин:

M(X+Y)=M(X)+M(Y).

Теорема 6.2. Математическое ожидание произведения двух случайных величин равно произведению их математических ожиданий плюс корреляционный момент:

M(XY)=M(X)M(Y)+\mu_{xy}.

Следствие 6.1. Математическое ожидание произведения двух некоррелированных случайных величин равно произведению их математических ожиданий.

Следствие 6.2. Математическое ожидание произведения двух независимых случайных величин равно произведению их математических ожиданий.

Дисперсия функции случайных величин

По определению дисперсии имеем D[Y]=M[(Y-M(Y))^2]. . Следовательно,

D[\varphi(x)]=M[(\varphi(x)-M(\varphi(x)))^2] , где .

Приведем расчетные формулы только для случая непрерывных случайных аргументов. Для функции одного случайного аргумента Y=\varphi(X) дисперсия выражается формулой

D[\varphi(x)]=\int\limits_{-\infty}^{+\infty}(\varphi(x)-M(\varphi(x)))^2f(x)\,dx,

где M(\varphi(x))=M[\varphi(X)] - математическое ожидание функции \varphi(X) ; f(x) - плотность распределения величины X .

Формулу (6.5) можно заменить на следующую:

D[\varphi(x)]=\int\limits_{-\infty}^{+\infty}\varphi^2(x)f(x)\,dx-M^2(X)

Рассмотрим теоремы о дисперсиях , которые играют важную роль в теории вероятностей и ее приложениях.

Теорема 6.3. Дисперсия суммы случайных величин равна сумме дисперсий этих величин плюс удвоенная сумма корреляционных моментов каждой из слагаемых величин со всеми последующими:

D\!\left[\sum\limits_{i=1}^{n}X_i\right]=\sum\limits_{i=1}^{n}D+2\sum\limits_{i

Следствие 6.3. Дисперсия суммы некоррелированных случайных величин равна сумме дисперсий слагаемых:

D\!\left[\sum\limits_{i=1}^{n}X_i\right]=\sum\limits_{i=1}^{n}D \mu_{y_1y_2}= M(Y_1Y_2)-M(Y_1)M(Y_2).

\mu_{y_1y_2}=M(\varphi_1(X)\varphi_2(X))-M(\varphi_1(X))M(\varphi_2(X)).


т. е. корреляционный момент двух функций случайных величин равен математическому ожиданию произведения этих функций минус произведение из математических ожиданий.

Рассмотрим основные свойства корреляционного момента и коэффициента корреляции .

Свойство 1. От прибавления к случайным величинам постоянных величин корреляционный момент и коэффициент корреляции не изменяются.

Свойство 2. Для любых случайных величин X и Y абсолютная величина корреляционного момента не превосходит среднего геометрического дисперсий данных величин:

|\mu_{xy}|\leqslant\sqrt{D[X]\cdot D[Y]}=\sigma_x\cdot \sigma_y,

Математическое ожидание

Дисперсия непрерывной случайной величины X , возможные значения которой принадлежат всей оси Ох, определяется равенством:

Назначение сервиса . Онлайн калькулятор предназначен для решения задач, в которых заданы либо плотность распределения f(x) , либо функция распределения F(x) (см. пример). Обычно в таких заданиях требуется найти математическое ожидание, среднее квадратическое отклонение, построить графики функций f(x) и F(x) .

Инструкция . Выберите вид исходных данных: плотность распределения f(x) или функция распределения F(x) .

Задана плотность распределения f(x) Задана функция распределения F(x)

Задана плотность распределения f(x):

Задана функция распределения F(x):

Непрерывная случайна величина задана плотностью вероятностей
(закон распределения Релея – применяется в радиотехнике). Найти M(x) , D(x) .

Случайную величину X называют непрерывной , если ее функция распределения F(X)=P(X < x) непрерывна и имеет производную.
Функция распределения непрерывной случайной величины применяется для вычисления вероятностей попадания случайной величины в заданный промежуток:
P(α < X < β)=F(β) - F(α)
причем для непрерывной случайной величины не имеет значения, включаются в этот промежуток его границы или нет:
P(α < X < β) = P(α ≤ X < β) = P(α ≤ X ≤ β)
Плотностью распределения непрерывной случайной величины называется функция
f(x)=F’(x) , производная от функции распределения.

Свойства плотности распределения

1. Плотность распределения случайной величины неотрицательна (f(x) ≥ 0) при всех значениях x.
2. Условие нормировки:

Геометрический смысл условия нормировки: площадь под кривой плотности распределения равна единице.
3. Вероятность попадания случайной величины X в промежуток от α до β может быть вычислена по формуле

Геометрически вероятность попадания непрерывной случайной величины X в промежуток (α, β) равна площади криволинейной трапеции под кривой плотности распределения, опирающейся на этот промежуток.
4. Функция распределения выражается через плотность следующим образом:

Значение плотности распределения в точке x не равно вероятности принять это значение, для непрерывной случайной величины речь может идти только о вероятности попадания в заданный интервал. Пусть . Числовые характеристики X :

Следовательно, . Решая данную систему, получим две пары значений: . Так как по условию задачи , то окончательно имеем: .

Ответ: .

Пример 2.11. В среднем по 10% договоров страховая компания выплачивает страховые суммы в связи с наступлением страхового случая. Вычислить математическое ожидание и дисперсию числа таких договоров среди наудачу выбранных четырех.

Решение: Математическое ожидание и дисперсию можно найти по формулам:

.

Возможные значения СВ (число договоров (из четырех) с наступлением страхового случая): 0, 1, 2, 3, 4.

Используем формулу Бернулли, чтобы вычислить вероятности различного числа договоров (из четырех), по которым были выплачены страховые суммы:

.

Ряд распределения СВ (число договоров с наступлением страхового случая) имеет вид:

0,6561 0,2916 0,0486 0,0036 0,0001

Ответ: , .

Пример 2.12. Из пяти роз две белые. Составить закон распределения случайной величины, выражающей число белых роз среди двух одновременно взятых.

Решение: В выборке из двух роз может либо не оказаться белой розы, либо может быть одна или две белые розы. Следовательно, случайная величина Х может принимать значения: 0, 1, 2. Вероятности того, что Х примет эти значения, найдем по формуле:

где -- число роз;

-- число белых роз;

число одновременно взятых роз;

-- число белых роз среди взятых.

.

.

.

Тогда закон распределения случайной величины будет такой:

Пример 2.13. Среди 15 собранных агрегатов 6 нуждаются в дополнительной смазке. Составить закон распределения числа агрегатов, нуждающихся в дополнительной смазке, среди пяти наудачу выбранных из общего числа.

Решение: Случайная величина Х – число агрегатов, нуждающихся в дополнительной смазке среди пяти выбранных – может принимать значения: 0, 1, 2, 3, 4, 5 и имеет гипергеометрическое распределение. Вероятности того, что Х примет эти значения, найдем по формуле:

где -- число собранных агрегатов;

-- число агрегатов, нуждающихся в дополнительной смазке;

число выбранных агрегатов;

-- число агрегатов, нуждающихся в дополнительной смазке среди выбранных.

.

.

.

.

.

.

Тогда закон распределения случайной величины будет такой:

Пример 2.14. Из поступивших в ремонт 10 часов 7 нуждаются в общей чистке механизма. Часы не рассортированы по виду ремонта. Мастер, желая найти часы, нуждающиеся в чистке, рассматривает их поочередно и, найдя такие часы, прекращает дальнейший просмотр. Найти математическое ожидание и дисперсию числа просмотренных часов.

Решение: Случайная величина Х – число агрегатов, нуждающихся в дополнительной смазке среди пяти выбранных – может принимать значения: 1, 2, 3, 4. Вероятности того, что Х примет эти значения, найдем по формуле:

.

.

.

.

Тогда закон распределения случайной величины будет такой:

Теперь вычислим числовые характеристики величины :

Ответ: , .

Пример 2.15. Абонент забыл последнюю цифру нужного ему номера телефона, однако помнит, что она нечетная. Найти математическое ожидание и дисперсию числа сделанных им наборов номера телефона до попадания на нужный номер, если последнюю цифру он набирает наудачу, а набранную цифру в дальнейшем не набирает.

Решение: Случайная величина может принимать значения: . Так как набранную цифру абонент в дальнейшем не набирает, то вероятности этих значений равны .

Составим ряд распределения случайной величины:

0,2

Вычислим математическое ожидание и дисперсию числа попыток набора номера:

Ответ: , .

Пример 2.16. Вероятность отказа за время испытаний на надежность для каждого прибора серии равна p . Определить математическое ожидание числа приборов, давших отказ, если испытанию подверглись N приборов.

Решение: Дискретная случайная величина X - число отказавших приборов в N независимых испытаниях, в каждом из которых вероятность появления отказа равна p, распределена по биномиальному закону. Математическое ожидание биномиального распределения равно произведению числа испытаний на вероятность появления события в одном испытании:

Пример 2.17. Дискретная случайная величина X принимает 3 возможных значения: с вероятностью ; с вероятностью и с вероятностью . Найти и , зная, что M(X ) = 8.

Решение: Используем определения математического ожидания и закона распределения дискретной случайной величины:

Находим: .

Пример 2.18. Отдел технического контроля проверяет изделия на стандартность. Вероятность того, что изделие стандартно, равна 0,9. В каждой партии содержится 5 изделий. Найти математическое ожидание случайной величины X – числа партий, в каждой из которых содержится ровно 4 стандартных изделия, если проверке подлежат 50 партий.

Решение: В данном случае все проводимые опыты независимы, а вероятности того, что в каждой партии содержится ровно 4 стандартных изделия, одинаковы, следовательно, математическое ожидание можно определить по формуле:

,

где - число партий;

Вероятность того, что в партии содержится ровно 4 стандартных изделия.

Вероятность найдем по формуле Бернулли:

Ответ: .

Пример 2.19. Найти дисперсию случайной величины X – числа появлений события A в двух независимых испытаниях, если вероятности появления события в этих испытаниях одинаковы и известно, что M (X ) = 0,9.

Решение: Задачу можно решить двумя способами.

1) Возможные значения СВ X : 0, 1, 2. По формуле Бернулли определим вероятности этих событий:

, , .

Тогда закон распределения X имеет вид:

Из определения математического ожидания определим вероятность :

Найдем дисперсию СВ X :

.

2) Можно использовать формулу:

.

Ответ: .

Пример 2.20. Математическое ожидание и среднее квадратическое отклонение нормально распределенной случайной величины X соответственно равны 20 и 5. Найти вероятность того, что в результате испытания X примет значение, заключенное в интервале (15; 25).

Решение: Вероятность попадания нормальной случайной величины Х на участок от до выражается через функцию Лапласа:

Пример 2.21. Дана функция:

При каком значении параметра C эта функция является плотностью распределения некоторой непрерывной случайной величины X ? Найти математическое ожиданий и дисперсию случайной величины X .

Решение: Для того, чтобы функция была плотностью распределения некоторой случайной величины , она должна быть неотрицательна, и она должна удовлетворять свойству:

.

Следовательно:

Вычислим математическое ожидание по формуле:

.

Вычислим дисперсию по формуле:

T равна p . Необходимо найти математическое ожидание и дисперсию этой случайной величины.

Решение: Закон распределения дискретной случайной величины X - числа появлений события в независимых испытаниях, в каждом из которых вероятность появления события равна , называют биномиальным. Математическое ожидание биномиального распределения равно произведению числа испытаний на вероятность появления события А одном испытании:

.

Пример 2.25. Производится три независимых выстрела по мишени. Вероятность попадания при каждом выстреле равна 0.25. Определить среднее квадратическое отклонение числа попаданий при трех выстрелах.

Решение: Так как производится три независимых испытания, и вероятность появления события А (попадания) в каждом испытании одинакова, то будем считать, что дискретная случайная величина X - число попаданий в мишень – распределена по биномиальному закону.

Дисперсия биномиального распределения равна произведению числа испытаний на вероятности появления и непоявления события в одном испытании:

Пример 2.26. Среднее число клиентов, посещающих страховую компанию за 10 мин., равно трем. Найти вероятность того, что в ближайшие 5 минут придет хотя бы один клиент.

Среднее число клиентов, пришедших за 5 минут: . .

Пример 2.29. Время ожидания заявки в очереди на процессор подчиняется показательному закону распределения со средним значением 20 секунд. Найти вероятность того, что очередная (произвольная) заявка будет ожидать процессор более 35 секунд.

Решение: В этом примере математическое ожидание , а интенсивность отказов равна .

Тогда искомая вероятность:

Пример 2.30. Группа студентов в количестве 15 человек проводит собрание в зале, в котором 20 рядов по 10 мест в каждом. Каждый студент занимает место в зале случайным образом. Какова вероятность того, что не более трех человек будут находиться на седьмом месте ряда?

Решение:

Пример 2.31.

Тогда согласно классическому определению вероятности:

где -- число деталей в партии;

-- число нестандартных деталей в партии;

число отобранных деталей;

-- число нестандартных деталей среди отобранных.

Тогда закон распределения случайной величины будет такой.

Последние материалы раздела:

Интересные факты о физике
Интересные факты о физике

Какая наука богата на интересные факты? Физика! 7 класс - это время, когда школьники начинают изучать её. Чтобы серьезный предмет не казался таким...

Дмитрий конюхов путешественник биография
Дмитрий конюхов путешественник биография

Личное дело Федор Филиппович Конюхов (64 года) родился на берегу Азовского моря в селе Чкалово Запорожской области Украины. Его родители были...

Ход войны Русско японская 1904 1905 карта военных действий
Ход войны Русско японская 1904 1905 карта военных действий

Одним из крупнейших военных конфликтов начала XX века является русско-японская война 1904-1905 гг. Ее результатом была первая, в новейшей истории,...