Дегидратация спиртов алкены. Получение спиртов, применение, свойства

Министерство образования Р.Ф.

Курская государственная сельскохозяйственная

академия им. Проф. И. И. Иванова

РЕФЕРАТ ПО

Органической химии

ПОЛУЧЕНИЕ АЛКАНОВ,АЛКЕНОВ,АЛКИНОВ.

ВАЖНЕЙШИЕ ПРЕДСТАВИТЕЛИ.

ПРИМЕНЕНИЕ В ПРОМЫШЛЕННОСТИ.

Выполнил:

КУРСК-2001


План.

1.1 АЛКАНЫ (предельные углеводороды).

1.2 МЕТОДЫ ПОЛУЧЕНИЯ АЛКАНОВ.

1.3 ПРЕДСТАВИТЕЛИ АЛКАНОВ.

2.1 АЛКЕНЫ (этиленовые углеводороды).

2.2 МЕТОДЫ ПОЛУЧЕНИЯ АЛКЕНОВ.

2.3 ПРЕДСТАВИТЕЛИ АЛКЕНОВ.

3.1 АЛКИНЫ (ацетиленовые углеводороды).

3.2 МЕТОДЫ ПОЛУЧЕНИЯ АЛКИНОВ.

3.3 ПРЕДСТАВИТЕЛИ АЛКИНОВ.

4. ПРИМЕНЕНИЕ АЛКАНОВ, АЛКЕНОВ, АЛКИНОВ.


1.1 ПРЕДЕЛЬНЫЕ УГЛЕВОДОРОДЫ (алканы).

Предельными углеводородами (алканами) называются соединения, состоящие из атомов углерода и водорода, соединенных между собой только Q-связями, и не содержащие циклов. В алканах атомы углерода находятся в степени гибридизацииsp3 .

1.2 Методы получения алканов.

Главным природным источником предельных углеводородов яв­ляется нефть, а для первых членов гомологического ряда - природный газ. Однако выделение индивидуальных соединений из нефти или продуктов ее крекинга- весьма трудоемкая, а часто и невыполнимая задача, поэтому приходится прибегать к синтетическим методам полу­чения.

1. Алканы образуются при действии металлического натрия на моногалогенпроизводные - реакция Вюрца:

НзС-СН2-Вг + Вг-СН2-СH3 СНз-СН2-СН2-СНз + 2NaBr

Если взяты разные галогенпроизводные, то образуется смесь трех различных алканов, так как вероятность встречи в реакционном комплексе молекул одинаковых или разных равна, а реакционная способность их близка:

3C2H5I + 3CH3CH2CH2IС4Н10 + С5Н12 + С6Н14 + 6NaI

2. Алканы могут быть получены при восстановлении алкенов или алкинов водородом в присутствии катализаторов:

НзС-СН=СН-СНзНзС-СН2-СН2-СНз

3. Самые разнообразные производные алканов могут быть восста­новлены при высокой температуре иодистоводородной кислотой:

CHBr +2HI CH2 + HBr + I2

Однако в этих случаях иногда наблюдается частичная изомеризация углеродного скелета - образуются более разветвленные алканы.

4. Алканы могут быть получены при сплавлении солей карбоновых кислот со щелочью. Образующийся при этом алкан содержит на один атом углерода меньше, чем исходная карбоновая кислота:

СНз-С +NaOH CH4+Na2C03

1.3 Представители алканов

Согласно теории строения А. М. Бутлерова, физические свойства веществ зависят от их состава и строения. Рассмотрим на примере предельных углеводородов изменение физических свойств в гомоло­гическом ряду.

Четыре первых члена гомологического ряда, начиная с метана, газообразные вещества. Начиная с пентана и выше, нормальные угле­водороды представляют собой жидкости. Метан сгущается в жидкость лишь при -162 °С. У последующих членов ряда температура кипения возрастает, причем при переходе к следующему гомологу она воз­растает приблизительно на 25°.

Плотность углеводородов при температуре кипения для нижних членов ряда увеличивается сначала быстро, а затем все медленнее: от 0,416 у метана до величины, несколько большей 0,78 .Температура плавления нормальных углеводородов в гомологичес­ком ряду увеличивается медленно. Начиная с углеводорода С16Н34, высшие гомологи при обычной температуре - вещества твердые.

Температура кипения у всех разветвленных алканов ниже, чем у нормальных алканов, и притом тем ниже, чем более разветвлена углеродная цепь молекулы. Это видно, например, из сравнения температур кипения трех изомерных пентанов. Наоборот, температура плавления оказывается самой высокой у изомеров с макси­мально разветвленной углеродной цепью. Так, из всех изомерных октанов лишь гекса-метилэтап (СН3)3С-С (СНз)3 является твердым веществом уже при обычной темпе­ратуре (т. пл. 104° С). Эти закономерности объясняются следующими причинами.

Превращению жидкости в газ препятствуют ван-дер-ваальсовы силы взаимодей­ствия между атомами отдельных молекул. Поэтому чем больше атомов в молекуле, тем выше температура кипения вещества, следовательно, в гомологическом ряду тем­пература кипения должна равномерно расти. Если сравнить силы взаимодействия молекул н -пентана и неопентана, то ясно, что эти силы больше для молекулы с нор­мальной цепью углеродных атомов, чем для разветвленных, так как в молекуле неопентана центральный атом вообще выключен из взаимодействия.

Главным фактором, влияющим на температуру плавления вещества, является плотность упаковки молекулы в кристаллической решетке. Чем симметричнее моле­кула, тем плотнее ее упаковка в кристалле и тем выше температура плавления (у н -пентана -132° C, у неопентана -20° С)

2.1 АЛКЕНЫ (этиленовые углеводороды, олефины)

Углеводороды, в молекуле которых помимо простых Q-связей углерод - углерод и углерод - водород имеются углерод-углеродные

Связи, называются непредельными. Так как образование -связи формально эквивалентно потере молекулой двух атомсв годорода, то непредельные углеводороды содержат на 2п атомов иодорода меньше, чем предельные, где n число - связей

С6H14C6H12C6H10C6H8C6H6

Ряд, члены которого отличаются друг от друга на (2Н)n, называется изологическим рядом. Так, в приведенной выше схеме изологами являются гексан, гексены, гексадиены, гексины, гексатриены и бензол.

Углеводороды, содержащие одну - связь (т. е. двойную связь), называваются алкенами (олефинами) или, по первому члену ряда - этилену, этиленовыми углеводородами. Общая формула их гомологического ряда - CnH2n

2.2 Методы получения алкенов

При действии спиртовых растворов едких щелочей на галоген производные: отщепляется галогенводород и образуется двойная связь:

H3C-CH2-CH2BrH3C-CH=CH2+NaBr+H2O

Бромистый пропил Пропилен

Если в α-положении к атому углерода, связанному с галогеном, находится третичный, вторичный и первичный атомы водорода, то преимущественно отщепляется третичный атом водорода, в меньшей степени вторичный и тем более первичный (правило Зайцева):

H3C-C-CI H3C-C + KCL + H2O

2,3-Диметил-3-хлорпентан 2,3-Диметелпентен-2

Это связано с термодинамической устойчивостью образующихся алке-нoв. Чем больше заместителей имеет алкен у винильных атомов углерода, тем выше его устойчивость.

2. Действием на спирты водоотнимающих средств: а) при про­пускании спиртов над окисью алюминия при 300-400° С.

НзС-СН-СН2.-СНзНзС-СН=СН-СНз

Втор -Бутиловый спирт

б) при действии на спирты серной кислоты в мягких условияхреакция идет через промежуточное образование эфиров серной кислоты:

НзС-СН-СНз НзС-СН-СН3 H3C-CH=CH2

изопропнлопып спирт

При дегидратации спиртов в жестких условиях в кислых средах наблюдается та же закономерность в отщеплении водородных атомов разного типа, как и при отщеплении галогенводорода.

Первой стадией этого процесса является протонирование спирта, после чего от­щепляется молекула воды и образуется карбкатион:

СНз-СН2-СН-СНз + H CH3-CH2-CH-CH3 CH3-CH-CH-

CH3CH3-CH-CH-CH3CH3-CH=CH-CH3

Образовавшийся карбкатион стабилизируется выбросом протона из соседнего поло­жения с образованием двойной связи (β-элиминирование). В этом слу­чае тоже образуется наиболее разветвленный алкен (термодинамическиболее устойчивыи). При этом процессе часто наблюдаются перегруппировки карбкатионов связанные с изомеризацией углеродного скелета:

CH3 C-CH – CH3 CH3 C-CH-CH3

3. При действии Zn или Mg на дигалогенпроизводные с двумя

атомами галогена у соседних атомов углерода:

H3C – C CH2CIH3C - C - CH2+MgCI2


1,2-дихлор-2-метал- изобутилен

4. Гидрированием ацетиленовых углеводородов над катализато­рами с пониженной активностью (Fe или «отравленные», т. е. обрабо­танные серусодержащнми соединениями для понижения каталити­ческой активности, Pt и Pd):

НСС-СН(СНз)2Н2С=СН-СН(СНз)2

2.3 Представители алкенов.

Как и алкаиы, низшие гомологи ряда простейших алкенов при обычных условиях - газы, а начиная с С5 - низкокипящие жидкости (см. табл.).

Все алкены, как и алканы, практически нерастворимы в воде и хорошо растворимы в других органических растворителях, за исключением метилового спирта; все они имеют меньшую плотность, чем вода.

ОПРЕДЕЛЕНИЕ

Алкенами называются ненасыщенные углеводороды, молекулы которых содержат одну двойную связь. Строение молекулы алкенов на примере этилена приведено на рис. 1.

Рис. 1. Строение молекулы этилена.

По физическим свойствам алкены мало отличаются от алканов с тем же числом атомов углерода в молекуле. Низшие гомологи С 2 - С 4 при нормальных условиях - газы; С 5 - С 17 - жидкости; высшие гомологи - твердые вещества. Алкены нерастворимы в воде. Хорошо растворимы в органических растворителях.

Получение алкенов

В промышленности алкены получают при переработке нефти: крекингом и дегидрированием алканов. Лабораторные способы получения алкенов мы разделили на две группы:

  • Реакции элиминирования (отщепления)

— дегидратация спиртов

CH 3 -CH 2 -OH → CH 2 =CH 2 + H 2 O (H 2 SO 4 (conc) , t 0 = 170).

— дегидрогалогенированиемоногалогеналканов

CH 3 -CH(Br)-CH 2 -CH 3 + NaOH alcohol → CH 3 -CH=CH-CH 3 + NaBr + H 2 O (t 0).

— дегалогенированиедигалогеналканов

CH 3 -CH(Cl)-CH(Cl)-CH 2 -CH 3 + Zn(Mg) → CH 3 -CH=CH-CH 2 -CH 3 + ZnCl 2 (MgCl 2).

  • Неполное гидрирование алкинов

CH≡CH + H 2 →CH 2 =CH 2 (Pd, t 0).

Химические свойства алкенов

Алкены - весьма реакционноспособоные органические соединения. Это объясняется их строением. Химия алкенов - это химия двойной связи. Типичные реакции для алкенов - реакции электрофильного присоединения.

Химические превращения алкенов протекают с расщеплением:

1) π-связи С-С (присоединение, полимеризация и окисление)

— гидрирование

CH 3 -CH=CH 2 + H 2 → CH 3 -CH 2 -CH 2 (kat = Pt).

— галогенирование

CH 3 -CH 2 -CH=CH 2 + Br 2 → CH 3 -CH 2 -CH(Br)-CH 2 Br.

— гидрогалогенирование (протекает по правилу Марковникова: атом водорода присоединяется преимущественно к более гидрированному атому углерода)

CH 3 -CH=CH 2 + H-Cl → CH 3 -CH(Cl)-CH 3 .

— гидратация

CH 2 =CH 2 + H-OH → CH 3 -CH 2 -OH (H + , t 0).

— полимеризация

nCH 2 =CH 2 → -[-CH 2 -CH 2 -]- n (kat, t 0).

— окисление

CH 2 =CH 2 + 2KMnO 4 + 2KOH → HO-CH 2 -CH 2 -OH + 2K 2 MnO 4 ;

2CH 2 =CH 2 + O 2 → 2C 2 OH 4 (эпоксид) (kat = Ag,t 0);

2CH 2 =CH 2 + O 2 → 2CH 3 -C(O)H (kat = PdCl 2 , CuCl).

2) σ- и π-связей С-С

CH 3 -CH=CH-CH 2 -CH 3 + 4[O] → CH 3 COOH + CH 3 CH 2 COOH (KMnO 4 , H +, t 0).

3) связей С sp 3 -Н (в аллильном положении)

CH 2 =CH 2 + Cl 2 → CH 2 =CH-Cl + HCl (t 0 =400).

4) Разрыв всех связей

C 2 H 4 + 2O 2 → 2CO 2 + 2H 2 O;

C n H 2n + 3n/2 O 2 → nCO 2 + nH 2 O.

Применение алкенов

Алкены нашли применение в различных отраслях народного хозяйства. Рассмотрим на примере отдельных представителей.

Этилен широко используется в промышленном органическом синтезе для получения разнообразных органических соединений, таких как галогенопроизводные, спирты (этанол, этиленгликоль), уксусный альдегид, уксусная кислота и др. В большом количестве этилен расходуется для производства полимеров.

Пропилен используется как сырье для получения некоторых спиртов (например, пропанола-2, глицерина), ацетона и др. Полимеризацией пропилена получают полипропилен.

Примеры решения задач

ПРИМЕР 1

Задание При гидролизе водным раствором гидроксида натрия NaOH дихлорида, полученного присоединением 6,72 л хлора к этиленовому углеводороду, образовалось 22,8 г двухатомного спирта. Какова формула алкена, если известно, что реакции протекают с количественными выходами (без потерь)?
Решение Запишем уравнение хлорирования алкена в общем виде, а также реакцию получения двухатомного спирта:

C n H 2 n + Cl 2 = C n H 2 n Cl 2 (1);

C n H 2 n Cl 2 + 2NaOH = C n H 2 n (OH) 2 + 2HCl (2).

Рассчитаем количество вещества хлора:

n(Cl 2) = V(Cl 2) / V m ;

n(Cl 2) = 6,72 / 22,4 = 0,3 моль,

следовательно, дихлорида этилена тоже будет 0,3 моль (уравнение 1), двухатомного спирта также должно получиться 0,3 моль, а по условию задачи это 22,8 г. Значит молярная масса его будет равна:

M(C n H 2 n (OH) 2) = m(C n H 2 n (OH) 2) / n(C n H 2 n (OH) 2);

M(C n H 2 n (OH) 2) = 22,8 / 0,3 = 76 г/моль.

Найдем молярную массу алкена:

M(C n H 2 n) = 76 - (2×17) = 42 г/моль,

что соответствует формуле C 3 H 6 .

Ответ Формула алкенаC 3 H 6

ПРИМЕР 2

Задание Сколько граммов потребуется для бромирования 16,8 г алкена, если известно, что при каталитическом гидрировании такого же количества алкена присоединилось 6,72 л водорода? Каков состав и возможное строение исходного углеводорода?
Решение Запишем в общем виде уравнения бромирования и гидрирования алкена:

C n H 2 n + Br 2 = C n H 2 n Br 2 (1);

C n H 2 n + H 2 = C n H 2 n +2 (2).

Рассчитаем количество вещества водорода:

n(H 2) = V(H 2) / V m ;

n(H 2) = 6,72 / 22,4 = 0,3 моль,

следовательно, алкена тоже будет 0,3 моль (уравнение 2), а по условию задачи это 16,8 г. Значит молярная масса его будет равна:

M(C n H 2n) = m(C n H 2n) / n(C n H 2n);

M(C n H 2 n) = 16,8 / 0,3 = 56 г/моль,

что соответствует формуле C 4 H 8 .

Согласно уравнению (1) n(C n H 2 n) :n(Br 2) = 1:1, т.е.

n(Br 2) = n(C n H 2 n) = 0,3 моль.

Найдем массу брома:

m(Br 2) = n(Br 2) × M(Br 2);

M(Br 2) = 2×Ar(Br) = 2×80 = 160 г/моль;

m(MnO 2) = 0,3 × 160 = 48 г.

Составим структурные формулы изомеров: бутен-1 (1), бутен-2 (2), 2-метилпропен (3), циклобутан (4).

CH 2 =CH-CH 2 -CH 3 (1);

CH 3 -CH=CH-CH 3 (2);

CH 2 =C(CH 3)-CH 3 (3);

Ответ Масса брома равна 48 г

Алкены - непредельные углеводороды, в составе которых есть одна двойная связь. Примеры алкенов:

Методы получения алкенов.

1. Крекинг алканов при 400-700°С. Реакция идет по свободнорадикальному механизму:

2. Дегидрирование алканов:

3. Реакция элиминирования (отщепление): от соседних атомов углерода отщепляются 2 атома или 2 группы атомов, и образуется двойная связь. К таким реакциям относят:

А) Дегидратацию спиртов (нагрев свыше 150°С, при участии серной кислоты , как водоотнимающего реагента):

Б) Отщепление галогенводородов при воздействии спиртового раствора щелочи:

Атом водорода отщепляется преимущественно от того атома углерода, который связан с меньшим числом атомов водорода (наименее гидрогенизированного атома) - правило Зайцева .

В) Дегалогенирование:

Химические свойства алкенов.

Свойства алкенов обуславливаются наличием кратной связи, поэтому алкены вступают в реакции электрофильного присоединения, которое протекает в несколько стадий (Н-Х - реагент):

1-я стадия:

2-я стадия:

.

Ион водорода в такого типа реакциях принадлежит тому атому углерода, который имеет более отрицательный заряд. Распределение плотности такое:

Если в качестве заместителя стоит донор, который проявляется +I- эффект, то электронная плотность смещается в сторону наиболее гидрогенизированного атома углерода, создавая на нем частично отрицательный заряд. Реакции идут по правилу Марковникова : при присоединении полярных молекул типа НХ (HCl , HCN , HOH и т.д.) к несимметричным алкенам водород присоединяется преимущественно к более гидрогенизированому атому углерода при двойной связи.

А) Реакции присоединения:
1) Гидрогалогенирование:

Реакция идет по правилу Марковникова. Но если в реакции присутствует пероксид , то правило не учитывается:

2) Гидратация. Реакция идет по правилу Марковникова в присутствие фосфорной или серной кислоты :

3) Галогенирование. В результате происходит обесцвечивание бромной воды - это качественная реакция на кратную связь:

4) Гидрирование. Реакция протекает в присутствие катализаторов.

АЛКАНЫ (предельные углеводороды).

МЕТОДЫ ПОЛУЧЕНИЯ АЛКАНОВ.

ПРЕДСТАВИТЕЛИ АЛКАНОВ.

АЛКЕНЫ (этиленовые углеводороды).

МЕТОДЫ ПОЛУЧЕНИЯ АЛКЕНОВ.

ПРЕДСТАВИТЕЛИ АЛКЕНОВ.

АЛКИНЫ (ацетиленовые углеводороды).

МЕТОДЫ ПОЛУЧЕНИЯ АЛКИНОВ.

ПРЕДСТАВИТЕЛИ АЛКИНОВ.

ПРИМЕНЕНИЕ АЛКАНОВ, АЛКЕНОВ, АЛКИНОВ.

1.1 ПРЕДЕЛЬНЫЕ УГЛЕВОДОРОДЫ (алканы).

Предельными углеводородами (алканами) называются соединения, состоящие из атомов углерода и водорода, соединенных между собой только Q-связями, и не содержащие циклов. В алканах атомы углерода находятся в степени гибридизации sp3.

1.2 Методы получения алканов.

Главным природным источником предельных углеводородов является нефть, а для первых членов гомологического ряда - природный газ. Однако выделение индивидуальных соединений из нефти или продуктов ее крекинга- весьма трудоемкая, а часто и невыполнимая задача, поэтому приходится прибегать к синтетическим методам получения.

1. Алканы образуются при действии металлического натрия на моногалогенпроизводные - реакция Вюрца:

НзС-СН2-Вг + Вг-СН2-СH3 СНз-СН2-СН2-СНз + 2NaBr

Если взяты разные галогенпроизводные, то образуется смесь трех различных алканов, так как вероятность встречи в реакционном комплексе молекул одинаковых или разных равна, а реакционная способность их близка:

3C2H5I + 3CH3CH2CH2IС4Н10 + С5Н12 + С6Н14 + 6NaI

2. Алканы могут быть получены при восстановлении алкенов или алкинов водородом в присутствии катализаторов:

НзС-СН=СН-СНз НзС-СН2-СН2-СНз

3. Самые разнообразные производные алканов могут быть восстановлены при высокой температуре иодистоводородной кислотой:

CHBr +2HI CH2 + HBr + I2

Однако в этих случаях иногда наблюдается частичная изомеризация углеродного скелета - образуются более разветвленные алканы.

4. Алканы могут быть получены при сплавлении солей карбоновых кислот со щелочью. Образующийся при этом алкан содержит на один атом углерода меньше, чем исходная карбоновая кислота:

СНз-С +NaOH CH4+Na2C03

1.3 Представители алканов

Согласно теории строения А. М. Бутлерова, физические свойства веществ зависят от их состава и строения. Рассмотрим на примере предельных углеводородов изменение физических свойств в гомологическом ряду.

Четыре первых члена гомологического ряда, начиная с метана, газообразные вещества. Начиная с пентана и выше, нормальные углеводороды представляют собой жидкости. Метан сгущается в жидкость лишь при -162 °С. У последующих членов ряда температура кипения возрастает, причем при переходе к следующему гомологу она возрастает приблизительно на 25°.

Плотность углеводородов при температуре кипения для нижних членов ряда увеличивается сначала быстро, а затем все медленнее: от 0,416 у метана до величины, несколько большей 0,78 .Температура плавления нормальных углеводородов в гомологическом ряду увеличивается медленно. Начиная с углеводорода С16Н34, высшие гомологи при обычной температуре - вещества твердые.

Температура кипения у всех разветвленных алканов ниже, чем у нормальных алканов, и притом тем ниже, чем более разветвлена углеродная цепь молекулы. Это видно, например, из сравнения температур кипения трех изомерных пентанов. Наоборот, температура плавления оказывается самой высокой у изомеров с максимально разветвленной углеродной цепью. Так, из всех изомерных октанов лишь гекса-метилэтап (СН3)3С-С (СНз)3 является твердым веществом уже при обычной температуре (т. пл. 104° С). Эти закономерности объясняются следующими причинами.

Превращению жидкости в газ препятствуют ван-дер-ваальсовы силы взаимодействия между атомами отдельных молекул. Поэтому чем больше атомов в молекуле, тем выше температура кипения вещества, следовательно, в гомологическом ряду температура кипения должна равномерно расти. Если сравнить силы взаимодействия молекул н -пентана и неопентана, то ясно, что эти силы больше для молекулы с нормальной цепью углеродных атомов, чем для разветвленных, так как в молекуле неопентана центральный атом вообще выключен из взаимодействия.

Главным фактором, влияющим на температуру плавления вещества, является плотность упаковки молекулы в кристаллической решетке. Чем симметричнее молекула, тем плотнее ее упаковка в кристалле и тем выше температура плавления (у н -пентана -132° C, у неопентана -20° С)

2.1 АЛКЕНЫ (этиленовые углеводороды, олефины)

Углеводороды, в молекуле которых помимо простых Q-связей углерод - углерод и углерод - водород имеются углерод-углеродные

Связи, называются непредельными. Так как образование -связи формально эквивалентно потере молекулой двух атомов водорода, то непредельные углеводороды содержат на 2п атомов иодорода меньше, чем предельные, где n число - связей

С6H14 C6H12C6H10C6H8C6H6

Ряд, члены которого отличаются друг от друга на (2Н)n, называется изологическим рядом. Так, в приведенной выше схеме изологами являются гексан, гексены, гексадиены, гексины, гексатриены и бензол.

Углеводороды, содержащие одну - связь (т. е. двойную связь), называваются алкенами (олефинами) или, по первому члену ряда - этилену, этиленовыми углеводородами. Общая формула их гомологического ряда - CnH2n

2.2 Методы получения алкенов

При действии спиртовых растворов едких щелочей на галогенпроизводные:

отщепляется галогенводород и образуется двойная связь:

H3C-CH2-CH2BrH3C-CH=CH2+NaBr+H2O

Бромистый пропил Пропилен

Если в α-положении к атому углерода, связанному с галогеном, находится третичный, вторичный и первичный атомы водорода, то преимущественно отщепляется третичный атом водорода, в меньшей степени вторичный и тем более первичный (правило Зайцева):

H3C-C-CI H3C-C + KCL + H2O

2,3-Диметил-3-хлорпентан 2,3-Диметелпентен-2

Это связано с термодинамической устойчивостью образующихся алке-нoв. Чем больше заместителей имеет алкен у винильных атомов углерода, тем выше его устойчивость.

2. Действием на спирты водоотнимающих средств:

а) при пропускании спиртов над окисью алюминия при 300-400° С.

НзС-СН-СН2.-СНзНзС-СН=СН-СНз

Бутиловый спирт

б) при действии на спирты серной кислоты в мягких условиях реакция идет через промежуточное образование эфиров серной кислоты:

НзС-СН-СНз НзС-СН-СН3 H3C-CH=CH2

изопропнлопып спирт

При дегидратации спиртов в жестких условиях в кислых средах наблюдается та же закономерность в отщеплении водородных атомов разного типа, как и при отщеплении галогенводорода.

Первой стадией этого процесса является протонирование спирта, после чего отщепляется молекула воды и образуется карбкатион:

СНз-СН2-СН-СНз + H CH3-CH2-CH-CH3 CH3-CH-CH-

CH3CH3-CH-CH-CH3CH3-CH=CH-CH3

Образовавшийся карбкатион стабилизируется выбросом протона из соседнего положения с образованием двойной связи (β-элиминирование). В этом случае тоже образуется наиболее разветвленный алкен (термодинамически более устойчивыи). При этом процессе часто наблюдаются перегруппировки карбкатионов связанные с изомеризацией углеродного скелета:

CH3 C-CH – CH3 CH3 C-CH-CH3

3. При действии Zn или Mg на дигалогенпроизводные с двумя

атомами галогена у соседних атомов углерода:

H3C – C CH2CIH3C - C - CH2+MgCI2

1,2-дихлор-2-метал- изобутилен

4. Гидрированием ацетиленовых углеводородов над катализаторами

с пониженной активностью (Fe или “отравленные”, т. е. обработанные серусодержащнми соединениями для понижения каталитической активности, Pt и Pd):

НСС-СН(СНз)2Н2С=СН-СН(СНз)2

2.3 Представители алкенов.

Как и алкаиы, низшие гомологи ряда простейших алкенов при обычных условиях - газы, а начиная с С5 - низкокипящие жидкости (см. табл.).

Название

0,5660 (при -102° С)

Пропилен

0,6090 (при -47" С)

СНзСНзСН=СН2 СНз-СН=СН-СНз

(цис)Бутен-1

0,6696 (при -5° С) 0,6352 (приО°С)

СНз-СН=СН-СНз

(транс)-Бутеп-2

0,6361 (при 0°С)

(СНз)зС=СН2

Иэобутилен

0,6407 (при 0°С)

Все алкены, как и алканы, практически нерастворимы в воде и хорошо растворимы в других органических растворителях, за исключением метилового спирта; все они имеют меньшую плотность, чем вода.

3.1 АЛКИНЫ (ацетиленовые углеводороды)

Алкинами называются углеводороды, содержащие кроме Q-связей две

Связи (тройную связь) у одной пары углеродных атомов. Общая формула гомологического ряда ацетиленовых углеводородов СnН2n-2образование одной-связи формально эквивалентно потере двух атомов водорода.

Различными физическими методами доказано, что ацетилен C2H2 - I простейший представитель гомологического ряда алкинов - имеет линейную молекулу, в которой длина углерод-углеродной тройной связи равна 1,20 А, а длина связей углерод-водород 1,06 A.

Связи С-Н в ацетилене относятся к числу Q-связей, образованных путем перекрывапия s-орбитали водорода с гибридизованной sp- орбиталью углерода; в молекуле имеется одна углерод-углеродная а-связь (образованная перекрыванием двух гибридизованных sp-орби- талей углерода) и две углерод-углеродные -связи - результат перекрывания двух взаимно перпендикулярных пар “чистых” p-орбиталей и Р) соседних атомов углерода. Валентные углы в ацетилене на основании этой модели равны 180° и молекула имеет линейную конформацию, что делает невозможной цис-транс- изомерию при тройной связи.

3.2Методы получения алкинов.

Наиболее общим способом получения ацетиленовых углеводородов является действие спиртового раствора щелочей на дигалогенпроиз-водные предельных углеводородов с вицинальным (а) или геминаль-ным (б) расположением атомов галогена

б) СНз-СН2-СНСl2 -> СHз-ССН+2ИСl

CH3-CH2-CCl2-CH3 -> СНз-С С-СНз + 2НС1

Так как вицинальные дигалогенпроизводные обычно получают присоединением галогенов к этиленовым углеводородам, то реакцию (а) можно рассматривать как реакцию превращения этиленовых углеводородов в ацетиленовые.

Геминальные дигалогенпроизводные (оба атома галогена у одного атома углерода) являются производными кетонов или альдегидов и, следовательно, с помощью реакций (б) можно осуществить переход от карбонильных соединений к алкинам. При отщеплении галогенводородов действует уже известное правило Зайцева, что водород отщепляется от углеродного атома, содержащего меньшее количество атомов водорода.

Ацетилен можно получать непосредственно при высокотемпературном крекинге (термическом или электротермическом) метана или более, сложных углеводородов:

2СН4Н-СС-Н + ЗН2

3.3 Представители алкинов.

Как у алканов и алкенов, низшие члены гомологического ряда алкинов в обычных условиях-газообразные вещества. Данные табл. 22 показывают, что основные физико-химические характеристики углеводородов рассмотренных классов мало отличаются друг от друга (см. таблицу).

Название

Т кип., °С

HCC- CH2CH3 СНзСCСНз

Ацетилен Пропин

(возг,-23) 9

0,6200 (при-84° С) 0,6785 (при -27° С) 0;669б (при -10° С) 0,6880 (при 25° С)

4. ПРИМЕНЕНИЕ АЛКАНОВ, АЛКИНОВ, АЛКЕНОВ

Алкены вместе с алканами, ацетиленом и ароматическими углеводородами являются одним из главных сырьевых источников промышленности тяжелого (многотоннажного) органического синтеза.

Этилен в громадных количествах используется для переработки в полиэтилен и этиловый спирт, он идет на переработку в этилен-гликоль и употребляется в теплицах для ускорения вызревания плодов.

Пропилен перерабатывается в полипропилен, ацетон, изопропиловый спирт.

Ацетилен играет исключительно важную роль в промышленности. Его мировое производство достигает нескольких миллионов тонн. Громадное количество ацетилена используется для сварки металлов, при его горении

в кислороде температура достигает 2800° С. Это значительно более высокая температура, чем при сгорании водорода в кислороде, не говоря уже о сгорании метана. Причина этого в значительно меньшей теплоемкости СО2 по сравнению с Н2О, которой образуется больше при сгорании алканов, чем алкинов:

2СзН6 + 7O2 -> 4СО2 + 6Н2О

2С2 Н2 + 5O2 -> 4СО2 + ЗН2О

Неприятный запах ацетилена, получаемого из карбида, обусловлен примесями PH3 и AsH3, чистый ацетилен пахнет, как и все низшие углеводороды (бензин). Ацетилен и его смеси с воздухом крайне взрывчаты; ацетилен хранят и транспортируют в баллонах в виде ацетоновых растворов, пропитывающих пористые материалы.

НЕФТЬ И ЕЕ ПЕРЕРАБОТКА

Состав нефти.

Главным природным источником предельных углеводородов является нефть. Состав нефтей различается в зависимости от месторождения, однако все нефти при простой перегонке обычно разделяются на следующие фракции: газовая фракция, бензин, реактивное топливо, керосин, дизельное топливо, парафин, нефтяной гудрон.

Газовая фракция

(т. кип. до40◦C) содержит нормальные и разветвленные алканы до С, в основном пропан и бутаны. Природный газ из газовых месторождений состоит в основном из метана и этана.

Бензин авиационный

(т. кип. 40-180 °С) содержит углеводороды С6 - С10 В бензине обнаружено более 100 индивидуальных соединений, в число которых входят нормальные и разветвленные алканы, циклоалканы и алкилбензолы (арены).

Реактивное топливо

(т. кип. 150-280°С).

Керосин тракторный

(т, кип. 110-300 °С) содержит углеводороды С7-С14.

Дизельное топливо

(т. кип. 200-330 °С), в состав которого входят углеводороды C13 - C18, в больших масштабах подвергается крекингу, превращаясь в алканы (и алкены) с меньшей молекулярной массой (см. ниже).

Смазочные масла

(т. кип. 340-400°С) содержат углеводороды C18 - C25.

Парафин нефтяной

(т. кип. 320-500 °С), в его состав входят углеводороды С26-С38, из которых выделяют вазелин. Остаток после перегонки обычно называют асфальтом или гудроном.

Помимо углеводородов самых различных классов в нефти содержатся кислородные, сернистые и азотсодержащие вещества; иногда их суммарное содержание доходит до нескольких процентов.

В настоящее время наиболее признанной является теория органического происхождения нефти как продукта превращения растительных и животных остатков. Это подтверждается тем, что в образцах нефтей были найдены остатки порфиринов, стероиды растительного и животного происхождения и так называемый “хемофоссилий” - самые разнообразные фрагменты, содержащиеся в планктоне.

Хотя общепризнанно, что нефть является наиболее ценным природным источником химического сырья, до сих пор основное количество нефти и нефтепродуктов сгорает в двигателях внутреннего сгорания (бензин), дизелях и реактивных двигателях (керосин).

Моторное топливо. Октановое число.

Бензины различного происхождения по-разному ведут себя в двигателях внутреннего сгорания.

Стремясь к максимальному повышению мощности двигателя при малых габаритах и массе, стараются увеличить степень сжатия горючей смеси в цилиндре. Однако в быстроходных четырехтактных двигателях, работающих с принудительным зажиганием, при этом иногда происходит преждевременное воспламенение смеси - детонация. Это снижает мощность мотора и ускоряет его износ. Это явление связано с составом жидкого топлива, так как углеводороды разного строения при использовании их в качестве моторного топлива ведут себя различно. Наихудшие показатели - у парафинов нормального строения.

За стандарт горючего вещества с большой способностью к детонации принят нормальный гептан. Чем больше разветвлена углеродная цепь парафинового углеводорода, тем лучше протекает сгорание его в цилиндре и тем большей степени сжатия горючей смеси можно достичь. В качестве стандарта моторного топлива принят 2, 2, 4-триметилпентан (который обычно называют изооктаном) с хорошими антидетонационными свойствами. Составляя в различных пропорциях смеси этого октана с я-гептапом, сравнивают их поведение в моторе с поведением испытуемого бензина. Если смесь, содержащая 70% изооктана, ведет себя так же, как исследуемый бензин, то говорят, что последний имеет октановое число 70 (октановое число изооктана принято за 100; октановое число н -гептана принято равным нулю).

Одним из путей повышения детонационной стойкости топлив для двигателей с зажиганием от искры является применение антидетонаторов.

Антидетонаторы - это вещества, которые добавляют к бензинам (не более 0,5%) для улучшения аптидетопацнонных свойств. Достаточно эффективным антидетонатором является тетраэтилсвинец (ТЭС) РЬ (C2H5)4

Однако бензин с ТЭС и продукты его сгорания очень токсичны. В настоящее время найдены новые антидетонаторы на основе марганец-органических соединений типа циклопентадиеиклпснтакарбонилмарганца С5Н5Мn (СО)5: они менее токсичны и обладают лучшими антидетонационными свойствами. Добавление этих антидетонаторов к хорошим сортам бензина позволяет получать топливо с октановым числом до 135.

Для ракетных и дизельных двигателей, наоборот, наиболее ценны топлива с нормальной цепью углеродных атомов, обладающие наиболее низкой температурой воспламенения. Эту характеристику принято

оценивать в цетановых числах. Цетановое число 100 имеет углеводород н-Сц,Нд4, а цетаповое число 0 - 1-метилнафталин.

Синтез углеводородов

из CO+H2 .Пропуская над мелко раздробленнымникелем смесь окиси углерода (II) и водорода при 250° С, можно получитьметан:

СО+ЗН2СН4+Н2О

Если эту реакцию проводить при давлении 100-200 атм и температуре до 400°С, получается смесь, состоящая главным образом из кислородсодержащих продуктов, среди которых преобладают спирты; смесь эта была названа счшполом.

При применении железо-кобальтовых катализаторов и температуре 200° С образуется смесь алканов - синтин.

nСО + (2n + 1) Н2 СnН2n + 2 + H2О

Синтин и синтол являются продуктами многотоннажного органического синтеза и широко используются в качестве сырья для многих химических производств.

Клатраты.

Синтин и бензиновые фракции нефти состоят из смесей углеводородовнормального строения и с разветвленными цепями. Недавно был найден эффективный метод разделения органических соединений с нормальными цепями и разветвленных, получивший в общем случае название метода клатратного разделения. Для разделения углеводородовбыла использована мочевина. Кристаллы мочевины построены таким образом, что внутри кристаллов имеются узкие шестигранные каналы. Диаметр этих каналов таков, что внутрь их может пройти и задержаться за счет адсорбционных сил только углеводород нормального строения. Поэтому при обработке смеси органических соединений мочевиной (или некоторыми другими соединениями) вещества с нормальной цепью углеродных атомов кристаллизуются вместе с ней в виде комплексов. Этот метод имеет, безусловно, очень большое будущее - когда будет найдено большее число эффективных клатратообразователей.

Углеводороды разных классов (алканы, алкены, алкины, алкадиены, арены) можно получать различными способами.

Получение алканов

Крекинг алканов с изначально бо льшей длиной цепи

Процесс, используемый в промышленности, протекает в интервале температур 450-500 o C в присутствии катализатора и при температуре 500-700 o C в отсутствие катализатора:

Важность промышленного процесса крекинга заключается в том, что он позволяет повысить выход бензина из тяжелых фракций нефти, которые не представляют существенной ценности сами по себе.

Гидрирование непредельных углеводородов

  • алкенов:
  • алкинов и алкадиенов:

Газификация каменного угля

в присутствии никелевого катализатора при повышенных температуре и давлении может быть использована для получения метана:

Процесс Фишера-Тропша

С помощью данного метода могут быть получены предельные углеводороды нормального строения, т.е. алканы. Синтез алканов осуществляют, используя синтез-газ (смеси угарного газа CO и водорода H 2), который пропускают через катализаторы при высоких температуре и давлении:

Реакция Вюрца

С помощью данной реакции могут быть получены углеводороды с бо льшим числом атомов углерода в цепи, чем в исходных углеводородах. Реакция протекает при действии на галогеналканы металлического натрия:

Декарбоксилирование солей карбоновых кислот

Сплавление твердых солей карбоновых кислот со щелочами приводит к реакции декарбоксилирования, при этом образуются углеводород с меньшим числом атомов углерода и карбонат металла (реакция Дюма):

Гидролиз карбида алюминия

Взаимодействие карбида алюминия с водой, а также кислотами-неокислителями приводит к образованию метана:

Al 4 C 3 + 12H 2 O = 4Al(OH) 3 + 3CH 4

Al 4 C 3 + 12HCl = 4AlCl 3 + 3CH 4

Получение алкенов

Крекинг алканов

Реакция в общем виде уже была рассмотрена выше (получение алканов). Пример реакции крекинга:

Дегидрогалогенирование галогеналканов

Дегидрогалогенирование галогеналканов протекает при действии на них спиртового раствора щелочи:

Дегидратация спиртов

Данный процесс протекает в присутствии концентрированной серной кислоты и нагревании до температуры более 140 о С:

Обратите внимание, что и в случае дегидратации, и в случае дегидрогалогенирования отщепление низкомолекулярного продукта (воды или галогеноводорода) происходит по правилу Зайцева: водород отщепляется от менее гидрированного атома углерода.

Дегалогенирование вицинальных дигалогеналканов

Вицинальными дигалогеналканами называют такие производные углеводородов, у которых атомы хлора прикреплены к соседним атомам углеродной цепи.

Дегидрогалогенирование вицинальных галогеналканов можно осуществить, используя цинк или магний:

Дегидрирование алканов

Пропускание алканов над катализатором (Ni, Pt, Pd, Al 2 O 3 или Cr 2 O 3) при высокой температуре (400-600 о С) приводит к образованию соответствующих алкенов:

Получение алкадиенов

Дегидрирование бутана и бутена-1

В настоящий момент основным методом производства бутадиена-1,3 (дивинила) является каталитическое дегидрирование бутана, а также бутена-1, содержащихся в газах вторичной переработки нефти. Процесс проводят в присутствии катализатора на основе оксида хрома (III) при 500-650°С:

Действием высоких температур в присутствии катализаторов на изопентан (2-метилбутан) получают промышленно важный продукт – изопрен (исходное вещество для получения так называемого «натурального» каучука):

Метод Лебедева

Ранее (в Советском Союзе) бутадиен-1,3 получали по методу Лебедева из этанола:

Дегидрогалогенирование дигалогензамещенных алканов

Осуществляется действием на галогенпроизводные спиртового раствора щелочи:

Получение алкинов

Получение ацетилена

Пиролиз метана

При нагревании до температуры 1200-1500 о С метан подвергается реакции дегидрирования с одновременным удваиванием углеродной цепи – образуются ацетилен и водород:

Гидролиз карбидов щелочных и щелочноземельных металлов

Действием на карбиды щелочных и щелочно-земельных металлов воды или кислот-неокислителей в лаборатории получают ацетилен. Наиболее дешев и, как следствие, наиболее доступен для использования карбид кальция:

Дегидрогалогенирование дигалогеналканов

Получение гомологов ацетилена

Дегидрогалогенирование дигалогеналканов:

Дегидрирование алканов и алкенов:

Получение ароматических углеводородов (аренов)

Декарбоксилирование солей ароматических карбоновых кислот

Сплавлением солей ароматических карбоновых кислот со щелочами удается получить ароматические углеводороды с меньшим числом атомов углерода в молекуле по сравнению с исходной солью:

Тримеризация ацетилена

При пропускании ацетилена при температуре 400°C над активированным углем с хорошим выходом образуется бензол:

Аналогичным способом можно получать симметричные триалкилзамещенные бензолы из гомологов ацетилена. Например:

Дегидрирование гомологов циклогексана

При действии на циклоалканы с 6-ю атомами углерода в цикле высокой температуры в присутствии платины происходит дегидрирование с образованием соответствующего ароматического углеводорода:

Дегидроциклизация

Также возможно получение ароматических углеводородов из углеводородов нециклического строения при наличии углеродной цепи с длиной в 6 или более атомов углерода (дегидроциклизация). Процесс осуществляют при высоких температурах в присутствии платины или любого другого катализатора гидрирования-дегидрирования (Pd, Ni):

Алкилирование

Получение гомологов бензола алкилированием ароматических углеводородов хлорпроизоводными алканов, алкенами или спиртами.

Последние материалы раздела:

Чудеса Космоса: интересные факты о планетах Солнечной системы
Чудеса Космоса: интересные факты о планетах Солнечной системы

ПЛАНЕТЫ В древние времена люди знали только пять планет: Меркурий, Венера, Марс, Юпитер и Сатурн, только их можно увидеть невооруженным глазом....

Реферат: Школьный тур олимпиады по литературе Задания
Реферат: Школьный тур олимпиады по литературе Задания

Посвящается Я. П. Полонскому У широкой степной дороги, называемой большим шляхом, ночевала отара овец. Стерегли ее два пастуха. Один, старик лет...

Самые длинные романы в истории литературы Самое длинное литературное произведение в мире
Самые длинные романы в истории литературы Самое длинное литературное произведение в мире

Книга длинной в 1856 метровЗадаваясь вопросом, какая книга самая длинная, мы подразумеваем в первую очередь длину слова, а не физическую длину....