Что такое полупроводник? Полупроводниковые материалы: примеры полупроводников.

Полупроводники - широкий класс веществ, характеризующийся значениями удельной электропроводности, лежащей в диапазоне между удельной элек-тропроводностью металлов и хороших диэлектриков, то есть эти вещества не могут быть отнесены как к диэлектрикам (так как не являются хорошими изоля-торами), так и к металлам (не являются хорошими проводниками электрического тока). К полупроводникам, например, относят такие вещества как германий, кремний, селен, теллур, а также некоторые оксиды, сульфиды и сплавы металлов.

Свойства:

1) С повышением температуры удельное сопротивление полупроводников уменьшается, в отличие от металлов, у которых удельное сопротивление с повышением температуры увеличивается. Причем как правило в широком интервале температур возрастание это происходит экспоненционально. Удельное сопротивление полупроводниковых кристаллов может также уменьшаться при воздействии света или сильных электронных полей.

2) Свойство односторонней проводимости контакта двух полупроводников. Именно это свойство используется при создании разнообразных полупроводни-ковых приборов: диодов, транзисторов, тиристоров и др.

3) Контакты различных полупроводников в определенных условиях при осве-щении или нагревании являются источниками фото - э. д. с. или, соответственно, термо - э. д. с.

Полупроводники отличаются от других классов твердых тел многими специфическими особенностями, главнейшими из которых являются :

1) положительный температурный коэффициент электропроводности, то есть с повышением температуры электропроводность полупроводников растет;

2) удельная проводимость полупроводников меньше, чем у металлов, но больше, чем у изоляторов;

3) большие значения термоэлектродвижущей силы по сравнению с металлами;

4) высокая чувствительность свойств полупроводников к ионизирующим излучениям;

5) способность резкого изменения физических свойств под влиянием ничтожно малых концентраций примесей;

6) эффект выпрямления тока или неомическое поведение на контактах.

3. Физические процессы в p-n – переходе.

Основным элементом большинства полупроводниковых приборов является электронно-дырочный переход (р-n -переход), представляющий собой переходный слой между двумя областями полупроводника, одна из которых имеет электронную электропроводность, а другая - дырочную.

Образование p-n перехода. P-n переход в равновесном состоянии

Рассмотрим подробнее процесс образования p-n перехода. Равновесным называют такое состояние перехода, когда отсутствует внешнее напряжение. Напомним, что в р -области имеются два вида основных носителей заряда: неподвижные отрицательно заряженные ионы атомов акцепторной примеси и свободные положительно заряженные дырки; а в n -области имеются также два вида основных носителей заряда: неподвижные положительно заряженные ионы атомов акцепторной примеси и свободные отрицательно заряженные электроны.

До соприкосновения p и n областей электроны дырки и ионы примесей распределены равномерно. При контакте на границе p иn областей возникает градиент концентрации свободных носителей заряда и диффузия. Под действием диффузии электроны из n -области переходит в p и рекомбинирует там с дырками. Дырки из р -области переходят в n -область и рекомбинируют там с электронами. В результате такого движения свободных носителей заряда в пограничной области их концентрация убывает почти до нуля и в тоже время в р области образуется отрицательный пространственный заряд ионов акцепторной примеси, а в n -области положительный пространственный заряд ионов донорной примеси. Между этими зарядами возникает контактная разность потенциалов φ к и электрическое поле Е к , которое препятствует диффузии свободных носителей заряда из глубины р- иn- областей через р-n- переход. Таким образом область, объединённая свободными носителями заряда со своим электрическим полем и называется р-n- переходом.

P-n -переход характеризуется двумя основными параметрами:

1. Высота потенциального барьера . Она равна контактной разности потенциалов φ к . Это разность потенциалов в переходе, обусловленная градиентом концентрации носителей заряда. Это энергия, которой должен обладать свободный заряд чтобы преодолеть потенциальный барьер:

где k – постоянная Больцмана; е – заряд электрона; Т – температура; N а и N Д – концентрации акцепторов и доноров в дырочной и электронной областях соответственно; р р и р n – концентрации дырок в р- и n- областях соответственно; n i – собственная концентрация носителей заряда в нелигированном полупроводнике,  т =кТ/е - температурный потенциал. При температуре Т =27 0 С  т =0.025В, для германиевого перехода  к =0,6В, для кремниевого перехода к =0,8В.

2. Ширина p-n-перехода (рис.1) – это приграничная область, обеднённая носителями заряда, которая располагается в p и n областях: l p-n = l p + l n :

Отсюда ,

где ε – относительная диэлектрическая проницаемость материала полупроводника; ε 0 - диэлектрическая постоянная свободного пространства.

Толщина электронно-дырочных переходов имеет порядок (0,1-10)мкм. Если , то и p-n -переход называется симметричным, если , то и p-n -переход называется несимметричным, причём он в основном располагается в области полупроводника с меньшей концентрацией примеси.

В равновесном состоянии (без внешнего напряжения) через р-n переход движутся два встречных потока зарядов (протекают два тока). Это дрейфовый ток неосновных носителей заряда и диффузионный ток, который связан с основными носителями заряда. Так как внешнее напряжение отсутствует, и тока во внешней цепи нет, то дрейфовый ток и диффузионный ток взаимно уравновешиваются и результирующий ток равен нулю

I др + I диф = 0.

Это соотношение называют условие динамического равновесия процессов диффузии и дрейфа в изолированном (равновесном) p-n -переходе.

Поверхность, по которой контактируют p и n области называется металлургической границей. Реально она имеет конечную толщину - δ м . Если δ м << l p-n , то p-n -переход называют резким. Если δ м >>l p-n , то p-n -переход называют плавным.

Р-n переход при внешнем напряжении, приложенном к нему

Внешнее напряжение нарушает динамическое равновесие токов в p-n -переходе. P-n -переход переходит в неравновесное состояние. В зависимости от полярности напряжения приложенного к областям в p-n -перехода возможно два режима работы.

1) Прямое смещение p-n перехода . Р-n- переход считается смещённым в прямом направлении, если положительный полюс источника питания подсоединен к р -области, а отрицательный к n -области (рис.1.2)

При прямом смещении, напряжения  к и U направлены встречно, результирующее напряжение на p-n -переходе убывает до величины  к - U . Это приводит к тому, что напряженность электрического поля убывает и возобновляется процесс диффузии основных носителей заряда. Кроме того, прямое смещении уменьшает ширину p-n перехода, т.к. l p-n ≈ ( к – U) 1/2 . Ток диффузии, ток основных носителей заряда, становится много больше дрейфового. Через p-n -переход протекает прямой ток

I р-n =I пр =I диф +I др I диф .

При протекании прямого тока основные носители заряда р-области переходят в n-область, где становятся неосновными. Диффузионный процесс введения основных носителей заряда в область, где они становятся неосновными, называется инжекцией , а прямой ток – диффузионным током или током инжекции. Для компенсации неосновных носителей заряда накапливающихся в p и n-областях во внешней цепи возникает электронный ток от источника напряжения, т.е. принцип электронейтральности сохраняется.

При увеличении U ток резко возрастает, - температурный потенциал, и может достигать больших величин т.к. связан с основными носителями концентрация которых велика.

2) Обратное смещение , возникает когда к р -области приложен минус, а к n -области плюс, внешнего источника напряжения (рис.1.3).

Такое внешнее напряжение U включено согласно  к . Оно: увеличивает высоту потенциального барьера до величины  к + U ; напряженность электрического поля возрастает; ширина p-n перехода возрастает, т.к. l p-n ≈( к + U) 1/2 ; процесс диффузии полностью прекращается и через p-n переход протекает дрейфовый ток, ток неосновных носителей заряда. Такой ток p-n -перехода называют обратным, а поскольку он связан с неосновными носителями заряда, которые возникают за счет термогенерации то его называют тепловым током и обозначают - I 0 , т.е.

I р-n =I обр =I диф +I др I др = I 0 .

Этот ток мал по величине т.к. связан с неосновными носителями заряда, концентрация которых мала. Таким образом, p-n перехода обладает односторонней проводимостью.

При обратном смещении концентрация неосновных носителей заряда на границе перехода несколько снижается по сравнению с равновесной. Это приводит к диффузии неосновных носителей заряда из глубины p и n -областей к границе p-n перехода. Достигнув ее неосновные носители попадают в сильное электрическое поле и переносятся через p-n переход, где становятся основными носителями заряда. Диффузия неосновных носителей заряда к границе p-n перехода и дрейф через него в область, где они становятся основными носителями заряда, называется экстракцией . Экстракция и создает обратный ток p-n перехода – это ток неосновных носителей заряда.

Величина обратного тока сильно зависит: от температуры окружающей среды, материала полупроводника и площади p-n перехода.

Температурная зависимость обратного тока определяется выражением , где - номинальная температура, - фактическая температура, - температура удвоения теплового тока .

Тепловой ток кремниевого перехода много меньше теплового тока перехода на основе германия (на 3-4 порядка). Это связано с  к материала.

С увеличением площади перехода возрастает его обьем, а следовательно возрастает число неосновных носителей появляющихся в результате термогенерации и тепловой ток.

Итак, главное свойство p-n -перехода – это его односторонняя проводимость.

4. Вольтамперная характеристика p-n – перехода.

Получим вольт-амперную характеристику p-n перехода. Для этого запишем уравнение непрерывности в общем виде:

Будем рассматривать стационарный случай dp/dt = 0.

Рассмотрим ток в квазинейтральном объеме полупроводника n-типа справа от обедненной области p-n перехода (x > 0). Темп генерации G в квазинейтральном объеме равен нулю: G = 0. Электрическое поле E тоже равно нулю: E = 0. Дрейфовая компонента тока также равна нулю: I E = 0, следовательно, ток диффузионный . Темп рекомбинации R при малом уровне инжекции описывается соотношением:

Воспользуемся следующим соотношением, связывающим коэффициент диффузии, длину диффузии и время жизни неосновных носителей: Dτ = L p 2 .

С учетом отмеченных выше допущений уравнение непрерывности имеет вид:

Граничные условия для диффузионного уравнения в p-n переходе имеют вид:

Решение дифференциального уравнения (2.58) с граничными условиями (*) имеет вид:

Соотношение (2.59) описывает закон распределения инжектированных дырок в квазинейтральном объеме полупроводника n-типа для электронно-дырочного перехода (рис. 2.15). В токе p-n перехода принимают участие все носители, пересекшие границу ОПЗ с квазинейтральным объемом p-n перехода. Поскольку весь ток диффузионный, подставляя (2.59) в выражение для тока, получаем (рис. 2.16):

Соотношение (2.60) описывает диффузионную компоненту дырочного тока p-n перехода, возникающую при инжекции неосновных носителей при прямом смещении. Для электронной компоненты тока p-n перехода аналогично получаем:

При V G = 0 дрейфовые и диффузионные компоненты уравновешивают друг друга. Следовательно, .

Полный ток p-n перехода является суммой всех четырех компонент тока p-n перехода:

Выражение в скобках имеет физический смысл обратного тока p-n перехода. Действительно, при отрицательных напряжениях V G < 0 ток дрейфовый и обусловлен неосновными носителями. Все эти носители уходят из цилиндра длиной L n со скоростью L n /τ p . Тогда для дрейфовой компоненты тока получаем:

Рис. 2.15. Распределение неравновесных инжектированных из эмиттера носителей по квазинейтральному объему базы p-n перехода

Нетрудно видеть, что это соотношение эквивалентно полученному ранее при анализе уравнения непрерывности.

Если требуется реализовать условие односторонней инжекции (например, только инжекции дырок), то из соотношения (2.61) следует, что нужно выбрать малое значение концентрации неосновных носителей n p0 в p-области. Отсюда следует, что полупроводник p-типа должен быть сильно легирован по сравнению с полупроводником n-типа: N A >> N D . В этом случае в токе p-n перехода будет доминировать дырочная компонента (рис. 2.16).

Рис. 2.16. Токи в несимметричном p-n nереходе при прямом смещении

Таким образом, ВАХ p-n перехода имеет вид:

Плотность тока насыщения J s равна:

ВАХ p-n перехода, описываемая соотношением (2.62), приведена на рисунке 2.17.

Рис. 2.17. Вольт-амперная характеристика идеального p-n перехода

Как следует из соотношения (2.16) и рисунка 2.17, вольт-амперная характеристика идеального p-n перехода имеет ярко выраженный несимметричный вид. В области прямых напряжений ток p-n перехода диффузионный и экспоненциально возрастает с ростом приложенного напряжения. В области отрицательных напряжений ток p-n перехода - дрейфовый и не зависит от приложенного напряжения.

5. Емкость p-n – перехода.

Любая система, в которой при изменении потенциала φ меняется электрический заряд Q, обладает емкостью. Величина емкости С определяется соотношением: .

Для p-n перехода можно выделить два типа зарядов: заряд в области пространственного заряда ионизованных доноров и акцепторов Q B и заряд инжектированных носителей в базу из эмиттера Q p . При различных смещениях на p-n переходе при расчете емкости будет доминировать тот или иной заряд. В связи с этим для емкости p-n перехода выделяют барьерную емкость C B и диффузионную емкость C D .

Барьерная емкость C B - это емкость p-n перехода при обратном смещении V G < 0, обусловленная изменением заряда ионизованных доноров в области пространственного заряда.

Величина заряда ионизованных доноров и акцепторов Q B на единицу площади для несимметричного p-n перехода равна:

Дифференцируя выражение (2.65), получаем:

Из уравнения (2.66) следует, что барьерная емкость C B представляет собой емкость плоского конденсатора, расстояние между обкладками которого равно ширине области пространственного заряда W. Поскольку ширина ОПЗ зависит от приложенного напряжения V G , то и барьерная емкость также зависит от приложенного напряжения. Численные оценки величины барьерной емкости показывают, что ее значение составляет десятки или сотни пикофарад.

Диффузионная емкость C D - это емкость p-n перехода при прямом смещении V G > 0, обусловленная изменением заряда Q p инжектированных носителей в базу из эмиттера Q p .

Зависимость барьерной емкости С B от приложенного обратного напряжения V G используется для приборной реализации. Полупроводниковый диод, реализующий эту зависимость, называется варикапом. Максимальное значение емкости варикап имеет при нулевом напряжении V G . При увеличении обратного смещения емкость варикапа уменьшается. Функциональная зависимость емкости варикапа от напряжения определяется профилем легирования базы варикапа. В случае однородного легирования емкость обратно пропорциональна корню из приложенного напряжения V G . Задавая профиль легирования в базе варикапа N D (x), можно получить различные зависимости емкости варикапа от напряжения C(V G) - линейно убывающие, экспоненциально убывающие.

6. Полупроводниковые диоды: классификация, особенности конструкции, условные обозначения и маркировка.

Полупроводниковый диод - полупроводниковый прибор с одним электрическим переходом и двумя выводами (электродами). В отличие от других типов диодов, принцип действия полупроводникового диода основывается на явлении p-n -перехода.

Полупроводники характеризуются как свойствами проводников , так и диэлектриков . В полупроводниковых кристаллах атомы устанавливают ковалентные связи (то есть, один электрон в кристалле кремния, как и алмаза, связан двумя атомами), электронам необходим уровень внутренней энергии для высвобождения из атома (1,76·10 −19 Дж против 11,2·10 −19 Дж, чем и характеризуется отличие между полупроводниками и диэлектриками). Эта энергия появляется в них при повышении температуры (например, при комнатной температуре уровень энергии теплового движения атомов равняется 0,4·10 −19 Дж), и отдельные атомы получают энергию для отрыва электрона от атома. С ростом температуры число свободных электронов и дырок увеличивается, поэтому в полупроводнике, не содержащем примесей, удельное сопротивление уменьшается. Условно принято считать полупроводниками элементы с энергией связи электронов меньшей чем 1,5-2 эВ. Электронно-дырочный механизм проводимости проявляется у собственных (то есть без примесей) полупроводников. Он называется собственной электрической проводимостью полупроводников.

Дырка

Во время разрыва связи между электроном и ядром появляется свободное место в электронной оболочке атома. Это обуславливает переход электрона с другого атома на атом со свободным местом. На атом, откуда перешёл электрон, входит другой электрон из другого атома и т. д. Это обуславливается ковалентными связями атомов. Таким образом, происходит перемещение положительного заряда без перемещения самого атома. Этот условный положительный заряд называют дыркой .

Собственная плотность

При термодинамическом равновесии, плотность электронов полупроводника связана с температурой следующим соотношением:

- Постоянная Планка - масса электрона - температура ; - уровень проводимой зоны - уровень Ферми ;

Также, плотность дырок полупроводника связана с температурой следующим соотношением:

- Постоянная Планка ; - масса дырки; - температура ; - уровень Ферми ; - уровень валентной зоны.

Собственная плотность связана с и следующим соотношением:

Виды полупроводников

По характеру проводимости

Собственная проводимость

Полупроводники, в которых свободные электроны и «дырки» появляются в процессе ионизации атомов, из которых построен весь кристалл, называют полупроводниками с собственной проводимостью. В полупроводниках с собственной проводимостью концентрация свободных электронов равняется концентрации «дырок».

Проводимость связана с подвижностью частиц следующим соотношением:

где - удельное сопротивление, - подвижность электронов , - подвижность дырок, - их концентрация, q - элементарный электрический заряд (1,602·10 −19 Кл).

Для собственного полупроводника концентрации носителей совпадают и формула принимает вид:

Примесная проводимость

Для создания полупроводниковых приборов часто используют кристаллы с примесной проводимостью. Такие кристаллы изготавливаются с помощью внесения примесей с атомами трехвалентного или пятивалентного химического элемента.

По виду проводимости

Электронные полупроводники (n-типа)

Полупроводник n-типа

Термин «n-тип» происходит от слова «negative», обозначающего отрицательный заряд основных носителей. Этот вид полупроводников имеет примесную природу. В четырёхвалентный полупроводник (например, кремний) добавляют примесь пятивалентного полупроводника (например, мышьяка). В процессе взаимодействия каждый атом примеси вступает в ковалентную связь с атомами кремния. Однако для пятого электрона атома мышьяка нет места в насыщенных валентных связях, и он переходит на дальнюю электронную оболочку. Там для отрыва электрона от атома нужно меньшее количество энергии. Электрон отрывается и превращается в свободный. В данном случае перенос заряда осуществляется электроном, а не дыркой, то есть данный вид полупроводников проводит электрический ток подобно металлам. Примеси, которые добавляют в полупроводники, вследствие чего они превращаются в полупроводники n-типа, называются донорными.

Проводимость N-полупроводников приблизительно равна:

Дырочные полупроводники (р-типа)

Полупроводник p-типа

Термин «p-тип» происходит от слова «positive», обозначающего положительный заряд основных носителей. Этот вид полупроводников, кроме примесной основы, характеризуется дырочной природой проводимости. В четырёхвалентный полупроводник (например, в кремний) добавляют небольшое количество атомов трехвалентного элемента (например, индия). Каждый атом примеси устанавливает ковалентную связь с тремя соседними атомами кремния. Для установки связи с четвёртым атомом кремния у атома индия нет валентного электрона, поэтому он захватывает валентный электрон из ковалентной связи между соседними атомами кремния и становится отрицательно заряженным ионом, вследствие чего образуется дырка. Примеси, которые добавляют в этом случае, называются акцепторными.

Проводимость p-полупроводников приблизительно равна:

Использование в радиотехнике

Полупроводниковый диод

Полупроводниковый диод состоит из двух типов полупроводников - дырочного и электронного. В процессе контакта между этими областями из области с полупроводником n-типа в область с полупроводником p-типа проходят электроны, которые затем рекомбинируют с дырками. Вследствие этого возникает электрическое поле между двумя областями, что устанавливает предел деления полупроводников - так называемый p-n переход . В результате в области с полупроводником p-типа возникает некомпенсированный заряд из отрицательных ионов, а в области с полупроводником n-типа возникает некомпенсированный заряд из положительных ионов. Разница между потенциалами достигает 0,3-0,6 В.

Связь между разницей потенциалов и концентрацией примесей выражается следующей формулой:

где - термодинамическое напряжение, - концентрация электронов, - концентрация дырок, - собственная концентрация .

В процессе подачи напряжения плюсом на p-полупроводник и минусом на n-полупроводник внешнее электрическое поле будет направлено против внутреннего электрического поля p-n перехода и при достаточном напряжении электроны преодолеют p-n переход, и в цепи диода появится электрический ток (прямая проводимость). При подаче напряжения минусом на область с полупроводником p-типа и плюсом на область с полупроводником n-типа между двумя областями возникает область, которая не имеет свободных носителей электрического тока (обратная проводимость). Обратный ток полупроводникового диода не равен нулю, так как в обоих областях всегда есть неосновные носители заряда. Для этих носителей p-n переход будет открыт.

Таким образом, p-n переход проявляет свойства односторонней проводимости, что обуславливается подачей напряжения с различной полярностью. Это свойство используют для выпрямления переменного тока .

Транзистор

Транзистор - полупроводниковое устройство, которое состоит из двух областей с полупроводниками p- или n-типа, между которыми находится область с полупроводником n- или p-типа. Таким образом, в транзисторе есть две области p-n перехода. Область кристалла между двумя переходами называют базой, а внешние области называют эмиттером и коллектором. Самой употребляемой схемой включения транзистора является схема включения с общим эмиттером, при которой через базу и эмиттер ток распространяется на коллектор.

Биполярный транзистор используют для усиления электрического тока.

Типы полупроводников в периодической системе элементов

В нижеследующей таблице представлена информация о большом количестве полупроводниковых элементов и их соединений, разделённых на несколько типов:

  • одноэлементные полупроводники IV группы периодической системы элементов ,
  • сложные: двухэлементные A III B V и A II B VI из третьей и пятой группы и из второй и шестой группы элементов соответственно.

Все типы полупроводников обладают интересной зависимостью ширины запрещённой зоны от периода, а именно - с увеличением периода ширина запрещённой зоны уменьшается.

Группа IIB IIIA IVA VA VIA
Период
2 5 6 7
3 13 14 15 16
4 30 31 32 33 34
5 48 49 50 51 52
6 80

Физические свойства и применение

Прежде всего, следует сказать, что физические свойства полупроводников наиболее изучены по сравнению с металлами и диэлектриками . В немалой степени этому способствует огромное количество эффектов, которые не могут быть наблюдаемы ни в тех ни в других веществах, прежде всего связанные с устройством зонной структуры полупроводников, и наличием достаточно узкой запрещённой зоны. Конечно же, основным стимулом для изучения полупроводников является производство полупроводниковых приборов и интегральных микросхем - это в первую очередь относится к кремнию , но затрагивает и другие соединения ( , GaAs , InP , InSb).

В связи с тем, что технологи могут получать очень чистые вещества, встаёт вопрос о новом эталоне для числа Авогадро .

Легирование

Объёмные свойства полупроводника могут сильно зависеть от наличия дефектов в кристаллической структуре . И поэтому стремятся выращивать очень чистые вещества, в основном для электронной промышленности. Легирующие примеси вводят для управления величиной и типом проводимости полупроводника. Например, широко распространённый кремний можно легировать элементом V подгруппы периодической системы элементов - фосфором , который является донором , и создать n-Si. Для получения кремния с дырочным типом проводимости (p-Si) используют бор (акцептор). Также создают компенсированные полупроводники с тем чтобы зафиксировать уровень Ферми в середине запрещённой зоны.

Методы получения

Для получения монокристаллов полупроводников используют различные методы физического и химического осаждения. Наиболее прецизионный и дорогой инструмент в руках технологов для роста монокристаллических плёнок - установки молекулярно-лучевой эпитаксии , позволяющей выращивать кристалл с точностью до монослоя.

Оптика полупроводников

Поглощение света полупроводниками обусловлено переходами между энергетическими состояниями зонной структуры. Учитывая принцип запрета Паули , электроны могут переходить только из заполненного энергетического уровня на незаполненный. В собственном полупроводнике все состояния валентной зоны заполнены, а все состояния зоны проводимости незаполненные, поэтому переходы возможны лишь из валентной зоны в зону проводимости . Для осуществления такого перехода электрон должен получить от света энергию, превышающую ширину запрещённой зоны. Фотоны с меньшей энергией не вызывают переходов между электронными состояниями полупроводника, поэтому такие полупроводники прозрачны в области частот , где - ширина запрещённой зоны, - постоянная Планка . Эта частота определяет фундаментальный край поглощения для полупроводника. Для полупроводников, которые зачастую применяются в электронике (кремний , германий , арсенид галлия) она лежит в инфракрасной области спектра.

Дополнительные ограничения на поглощение света полупроводников накладывают правила отбора , в частности закон сохранения импульса . Закон сохранения импульса требует, чтобы квазиимпульс конечного состояния отличался от квазиимпульса начального состояния на величину импульса поглощённого фотона. Волновое число фотона , где - длина волны, очень мало по сравнению с волновым вектором обратной решётки полупроводника, или, что то же самое, длина волны фотона в видимой области намного больше характерного межатомного расстояния в полупроводнике, что приводит к требованию того, чтобы квазиимпульс конечного состояния при электронном переходе практически равнялся квазиимпульсу начального состояния. При частотах, близких к фундаментальному краю поглощения, это возможно только для прямозонных полупроводников . Оптические переходы в полупроводниках, при которых импульс электрона почти не меняется называются прямыми или вертикальными . Импульс конечного состояния может значительно отличаться от импульса начального состояния, если в процессе поглощения фотона участвует ещё одна, третья частица, например, фонон . Такие переходы тоже возможны, хотя и менее вероятны. Они называются непрямыми переходами .

Таким образом, прямозонные полупроводники, такие как арсенид галлия , начинают сильно поглощать свет, когда энергия кванта превышает ширину запрещённой зоны. Такие полупроводники очень удобны для использования в оптоэлектронике .

Непрямозонные полупроводники, например, кремний , поглощают в области частот света с энергией кванта чуть больше ширины запрещённой зоны значительно слабее, только благодаря непрямым переходам, интенсивность которых зависит от присутствия фононов, и следовательно, от температуры . Граничная частота прямых переходов кремния больше 3 эВ, то есть лежит в ультрафиолетовой области спектра.

При переходе электрона из валентной зоны в зону проводимости в полупроводнике возникают свободные носители заряда , а следовательно фотопроводимость .

При частотах ниже края фундаментального поглощения также возможно поглощение света, которое связано с возбуждением экситонов , электронными переходами между уровнями примесей и разрешенными зонами, а также с поглощением света на колебаниях решётки и свободных носителях. Экситонные зоны расположены в полупроводнике несколько ниже дна зоны проводимости благодаря энергии связи экситона. Экситонные спектры поглощения имеют водородоподобную структуру энергетических уровней. Аналогичным образом примеси, акцепторы или доноры , создают акцепторные или донорные уровни, лежащие в запрещённой зоне. Они значительно модифицируют спектр поглощения легированного полупроводника. Если при непрямозонном переходе одновременно с квантом света поглощается фонон, то энергия поглощенного светового кванта может быть меньше на величину энергии фонона, что приводит к поглощению на частотах несколько ниже по энергии от фундаментального края поглощения.

Список полупроводников

Полупроводниковые соединения делят на несколько типов:

  • простые полупроводниковые материалы - собственно химические элементы: бор B, углерод C, германий Ge, кремний Si, селен Se, сера S, сурьма Sb, теллур Te и йод I. Самостоятельное применение широко нашли германий, кремний и селен. Остальные чаще всего применяются в качестве легирующих добавок или в качестве компонентов сложных полупроводниковых материалов;
  • в группу сложных полупроводниковых материалов входят химические соединения, обладающие полупроводниковыми свойствами и включающие в себя два, три и более химических элементов. Полупроводниковые материалы этой группы, состоящие из двух элементов, называют бинарными , и так же, как это принято в химии, имеют наименование того компонента, металлические свойства которого выражены слабее. Так, бинарные соединения, содержащие мышьяк, называют арсенидами , серу - сульфидами , теллур - теллуридами , углерод - карбидами . Сложные полупроводниковые материалы объединяют по номеру группы Периодической системы элементов Д. И. Менделеева , к которой принадлежат компоненты соединения, и обозначают буквами латинского алфавита (A - первый элемент, B - второй и т. д.). Например, бинарное соединение фосфид индия InP имеет обозначение A III B V

Широкое применние получили следующие соединения:

A III B V

  • InSb, InAs, InP, GaSb, GaP, AlSb, GaN, InN
A II B V
  • CdSb, ZnSb
A II B VI
  • ZnS, ZnSe, ZnTe, CdS, CdTe, HgSe, HgTe, HgS
A IV B VI
  • PbS, PbSe, PbTe, SnTe, SnS, SnSe, GeS, GeSe

а также некоторые окислы свинца, олова, германия, кремния а также феррит, аморфные стёкла и многие другие соединения (A I B III C 2 VI , A I B V C 2 VI , A II B IV C 2 V , A II B 2 II C 4 VI , A II B IV C 3 VI).

На основе большинства из приведённых бинарных соединений возможно получение их твёрдых растворов: (CdTe) x (HgTe) 1-x , (HgTe) x (HgSe) 1-x , (PbTe) x (SnTe) 1-x , (PbSe) x (SnSe) 1-x и других.

Соединения A III B V , в основном, применяются для изделий электронной техники, работающих на сверхвысоких частотах

Соединения A II B V используют в качестве люминофоров видимой области, светодиодов , датчиков Холла , модуляторов.

Соединения A III B V , A II B VI и A IV B VI применяют при изготовлении источников и приёмников света, индикаторов и модуляторов излучений.

Окисные полупроводниковые соединения применяют для изготовления фотоэлементов , выпрямителей и сердечников высокочастотных индуктивностей.

Физические свойства соединений типа A III B V
Параметры AlSb GaSb InSb AlAs GaAs InAs
Температура плавления, К 1333 998 798 1873 1553 1218
Постоянная решётки, 6,14 6,09 6,47 5,66 5,69 6,06
Ширина запрещённой зоны ΔE , эВ 0,52 0,7 0,18 2,2 1,32 0,35
Диэлектрическая проницаемость ε 8,4 14,0 15,9 - - -
Подвижность, см²/(В·с):
электронов 50 5000 60 000 - 4000 3400
дырок 150 1000 4000 - 400 460
Показатель преломления света, n 3,0 3,7 4,1 - 3,2 3,2
Линейный коэффициент теплового
расширения, K -1
- 6,9·10 -6 5,5·10 -6 5,7·10 -6 5,3·10 -6 -

Здравствуйте уважаемые читатели сайта . На сайте есть раздел посвященный начинающим радиолюбителям, но пока что для начинающих, делающих первые шаги в мир электроники, я толком ничего и не написал. Восполняю этот пробел, и с этой статьи мы начинаем знакомиться с устройством и работой радиокомпонентов (радиодеталей).

Начнем с полупроводниковых приборов. Но чтобы понять, как работает диод, тиристор или транзистор, надо представлять, что такое полупроводник . Поэтому мы, сначала изучим структуру и свойства полупроводников на молекулярном уровне, а затем уже будем разбираться с работой и устройством полупроводниковых радиокомпонентов.

Общие понятия.

Почему именно полупроводниковый диод, транзистор или тиристор? Потому, что основу этих радиокомпонентов составляют полупроводники – вещества, способные, как проводить электрический ток, так и препятствовать его прохождению.

Это большая группа веществ, применяемых в радиотехнике (германий, кремний, селен, окись меди), но для изготовления полупроводниковых приборов используют в основном только Кремний (Si) и Германий (Ge).

По своим электрическим свойствам полупроводники занимают среднее место между проводниками и непроводниками электрического тока.

Свойства полупроводников.

Электропроводность проводников сильно зависит от окружающей температуры.
При очень низкой температуре, близкой к абсолютному нулю (-273°С), полупроводники не проводят электрический ток, а с повышением температуры, их сопротивляемость току уменьшается .

Если на полупроводник навести свет , то его электропроводность начинает увеличиваться. Используя это свойство полупроводников, были созданы фотоэлектрические приборы. Также полупроводники способны преобразовывать энергию света в электрический ток, например, солнечные батареи. А при введении в полупроводники примесей определенных веществ, их электропроводность резко увеличивается.

Строение атомов полупроводников.

Германий и кремний являются основными материалами многих полупроводниковых приборов и имеют во внешних слоях своих оболочек по четыре валентных электрона .

Атом германия состоит из 32 электронов, а атом кремния из 14. Но только 28 электронов атома германия и 10 электронов атома кремния, находящиеся во внутренних слоях своих оболочек, прочно удерживаются ядрами и никогда не отрываются от них. Лишь только четыре валентных электрона атомов этих проводников могут стать свободными, да и то не всегда. А если атом полупроводника потеряет хотя бы один электрон, то он становится положительным ионом .

В полупроводнике атомы расположены в строгом порядке: каждый атом окружен четырьмя такими же атомами. Причем они расположены так близко друг к другу, что их валентные электроны образуют единые орбиты, проходящие вокруг соседних атомов, тем самым связывая атомы в единое целое вещество.

Представим взаимосвязь атомов в кристалле полупроводника в виде плоской схемы.
На схеме красные шарики с плюсом, условно, обозначают ядра атомов (положительные ионы), а синие шарики – это валентные электроны .

Здесь видно, что вокруг каждого атома расположены четыре точно таких же атома, а каждый из этих четырех имеет связь еще с четырьмя другими атомами и т.д. Любой из атомов связан с каждым соседним двумя валентными электронами, причем один электрон свой, а другой заимствован у соседнего атома. Такая связь называется двухэлектронной или ковалентной .

В свою очередь, внешний слой электронной оболочки каждого атома содержит восемь электронов: четыре своих, и по одному , заимствованных от четырех соседних атомов. Здесь уже не различишь, какой из валентных электронов в атоме «свой», а какой «чужой», так как они сделались общими. При такой связи атомов во всей массе кристалла германия или кремния можно считать, что кристалл полупроводника представляет собой одну большую молекулу . На рисунке розовым и желтым кругами показана связь между внешними слоями оболочек двух соседних атомов.

Электропроводность полупроводника.

Рассмотрим упрощенный рисунок кристалла полупроводника, где атомы обозначаются красным шариком с плюсом, а межатомные связи показаны двумя линиями, символизирующими валентные электроны.

При температуре, близкой к абсолютному нулю полупроводник не проводит ток, так как в нем нет свободных электронов . Но с повышением температуры связь валентных электронов с ядрами атомов ослабевает и некоторые из электронов, вследствие теплового движения, могут покидать свои атомы. Вырвавшийся из межатомной связи электрон становится «свободным », а там где он находился до этого, образуется пустое место, которое условно называют дыркой .

Чем выше температура полупроводника, тем больше в нем становится свободных электронов и дырок. В итоге получается, что образование «дырки» связано с уходом из оболочки атома валентного электрона, а сама дырка становится положительным электрическим зарядом равным отрицательному заряду электрона.

А теперь давайте рассмотрим рисунок, где схематично показано явление возникновения тока в полупроводнике .

Если приложить некоторое напряжение к полупроводнику, контакты «+» и «-», то в нем возникнет ток.
Вследствие тепловых явлений , в кристалле полупроводника из межатомных связей начнет освобождаться некоторое количество электронов (синие шарики со стрелками). Электроны, притягиваясь положительным полюсом источника напряжения, будут перемещаться в его сторону, оставляя после себя дырки , которые будут заполняться другими освободившимися электронами . То есть, под действием внешнего электрического поля носители заряда приобретают некоторую скорость направленного движения и тем самым создают электрический ток .

Например: освободившийся электрон, находящийся ближе всего к положительному полюсу источника напряжения притягивается этим полюсом. Разрывая межатомную связь и уходя из нее, электрон оставляет после себя дырку . Другой освободившийся электрон, который находится на некотором удалении от положительного полюса, также притягивается полюсом и движется в его сторону, но встретив на своем пути дырку, притягивается в нее ядром атома, восстанавливая межатомную связь.

Образовавшуюся новую дырку после второго электрона, заполняет третий освободившийся электрон, находящийся рядом с этой дыркой (рисунок №1). В свою очередь дырки , находящиеся ближе всего к отрицательному полюсу, заполняются другими освободившимися электронами (рисунок №2). Таким образом, в полупроводнике возникает электрический ток.

Пока в полупроводнике действует электрическое поле , этот процесс непрерывен : нарушаются межатомные связи — возникают свободные электроны — образуются дырки. Дырки заполняются освободившимися электронами – восстанавливаются межатомные связи, при этом нарушаются другие межатомные связи, из которых уходят электроны и заполняют следующие дырки (рисунок №2-4).

Из этого делаем вывод: электроны движутся от отрицательного полюса источника напряжения к положительному, а дырки перемещаются от положительного полюса к отрицательному .

Электронно-дырочная проводимость.

В «чистом» кристалле полупроводника число высвободившихся в данный момент электронов равно числу образующихся при этом дырок, поэтому электропроводность такого полупроводника мала , так как он оказывает электрическому току большое сопротивление, и такую электропроводность называют собственной .

Но если в полупроводник добавить в виде примеси некоторое количество атомов других элементов, то электропроводность его повысится в разы, и в зависимости от структуры атомов примесных элементов электропроводность полупроводника будет электронной или дырочной .

Электронная проводимость.

Допустим, в кристалле полупроводника, в котором атомы имеют по четыре валентных электрона, мы заменили один атом атомом, у которого пять валентных электронов. Этот атом своими четырьмя электронами свяжется с четырьмя соседними атомами полупроводника, а пятый валентный электрон останется «лишним » – то есть свободным. И чем больше больше окажется свободных электронов, а значит, такой полупроводник по своим свойствам приблизится к металлу, и чтобы через него проходил электрический ток, в нем не обязательно должны разрушаться межатомные связи .

Полупроводники, обладающие такими свойствами, называют полупроводниками с проводимостью типа «n », или полупроводники n -типа. Здесь латинская буква n происходит от слова «negative» (негатив) — то есть «отрицательный». Отсюда следует, что в полупроводнике n -типа основными носителями заряда являются – электроны , а не основными – дырки.

Дырочная проводимость.

Возьмем все тот же кристалл, но теперь заменим его атом атомом, в котором только три свободных электрона. Своими тремя электронами он свяжется только с тремя соседними атомами, а для связи с четвертым атомом у него не будет хватать одного электрона. В итоге образуется дырка . Естественно, она заполнится любым другим свободным электроном, находящимся поблизости, но, в любом случае, в кристалле такого полупроводника не будет хватать электронов для заполнения дырок. И чем больше будет таких атомов в кристалле, тем больше будет дырок.

Чтобы в таком полупроводнике могли высвобождаться и передвигаться свободные электроны, обязательно должны разрушаться валентные связи между атомами . Но электронов все равно не будет хватать, так как число дырок всегда будет больше числа электронов в любой момент времени.

Такие полупроводники называют полупроводниками с дырочной проводимостью или проводниками p -типа, что в переводе от латинского «positive» означает «положительный». Таким образом, явление электрического тока в кристалле полупроводника p-типа сопровождается непрерывным возникновением и исчезновением положительных зарядов – дырок. А это значит, что в полупроводнике p -типа основными носителями заряда являются дырки , а не основными — электроны.

Теперь, когда Вы имеете некоторое представление о явлениях, происходящих в полупроводниках, Вам не составит труда понять принцип действия полупроводниковых радиокомпонентов.

На этом давайте остановимся, а в рассмотрим устройство, принцип работы диода, разберем его вольт-амперную характеристику и схемы включения.
Удачи!

Источник:

1 . Борисов В.Г. — Юный радиолюбитель. 1985г.
2 . Сайт academic.ru: http://dic.academic.ru/dic.nsf/es/45172.

Наряду с проводниками электричества в природе существует много веществ, обладающих значительно меньшей электропроводимостью, чем металлические проводники. Вещества подобного рода называются полупроводниками.

К полупроводникам относятся: некоторые химические элементы, например селен, кремний и германий, сернистые соединения, например сернистый таллий, сернистый кадмий, сернистое серебро, карбиды, например карборунд, углерод (алмаз), бор, серое олово, фосфор, сурьму, мышьяк, теллур, йод и ряд соединений, в состав которых входит хотя бы один из элементов 4 - 7-й групп системы Менделеева. Существуют также органические полупроводники.

Природа электрической проводимости полупроводника зависит от рода примесей, имеющихся в основном материале полупроводника, и от технологии изготовления его составных частей.

Полупроводник - вещество с 10 -10 - 10 4 (ом х см) -1 , находящееся по этим свойствам между проводником и изолятором. Различие между проводниками, полупроводниками и изоляторами по зонной теории заключается в следующем: в чистых полупроводниках и электронных изоляторах между заполненной зоной (валентной) и зоной проводимости находится запрещенная зона энергий.


Почему полупроводники проводят ток

Полупроводник обладает электронной проводимостью, если в атомах его примеси внешние электроны относительно слабо связаны с ядрами этих атомов. Если в подобного рода полупроводнике создать электрическое поле, то под влиянием сил этого поля внешние электроны атомов примеси полупроводника покинут пределы своих атомов и превратятся в свободные электроны.

Свободные электроны создадут в полупроводнике электрический ток проводимости под влиянием сил электрического поля. Следовательно, природа электрического тока в полупрооводниках с электронной проводимостью та что и в металлических проводниках. Но так как свободных электронов в единице объема полупроводника во много раз меньше, чем в единице объема металлического проводника, то естественно, что при всех прочих одинаковых условиях ток в полупроводнике будет во много раз меньше, чем в металлическом проводнике.

Полупроводник обладает «дырочной» проводимостью, если атомы его примеси не только не отдают своих внешних электронов, но, наоборот, стремятся захватить электроны атомов основного вещества полупроводника. Если атом примеси отберет электрон у атома основного вещества, то в последнем образуется нечто вроде свободного места для электрона - «дырка».

Атом полупроводника, потерявший электрон, называют «электронной дыркой», или просто «дыркой». Если «дырка» заполняется электроном, перешедшим с соседнего атома, то она ликвидируется и атом становится нейтральным в электрическом отношении, а «дырка» смещается на соседний атом, потерявший электрон. Следовательно, если на полупроводник, обладающий «дырочной» проводимостью, воздействовать электрическим полем, то «электронные дырки» будут смещаться в направлении этого поля.

Смещение «электронных дырок» в направлении действия электрического поля аналогично перемещению положительных электрических зарядов в поле и, следовательно, представляет собой явление электрического тока в полупроводнике.

Полупроводники нельзя строго разграничивать по механизму их электрической проводимости, так как наряду с «дырочной» проводимостью данный полупроводник может в той или иной степени обладать и электронной проводимостью.

Полупроводники характеризуются:

    типом проводимости (электронный - n -тип, дырочный - р-тип);

    удельным сопротивлением;

    временем жизни носителей заряда (неосновных) или диффузионной длиной, скоростью поверхностной рекомбинации;

    плотностью дислокаций.

Кремний - наиболее распространенный полупроводниковый материал

Температура оказывает существ, влияние на характеристики полупроводников. Повышение ее преимущественно приводит к уменьшению удельного сопротивления и наоборот, т. е. для полупроводников характерно наличие отрицательного . Вблизи абсолютного нуля полупроводник становится изолятором.

Основой многих приборов служат полупроводники. В большинстве случаев они должны быть получены в виде монокристаллов. Для придания заданных свойств полупроводники легируют различными примесями. К чистоте исходных полупроводниковых материалов предъявляются повышенные требования.


В современной технике полупроводники нашли самое широкое применение, они оказали очень сильное влияние на технический прогресс. Благодаря им удается значительно уменьшить вес и габариты электронных устройств. Развитие всех направлений электроники приводит к созданию и совершенствованию большого количества разнообразной аппаратуры на полупроводниковых приборах. Полупроводниковые приборы служат основой микроэлементов, микромодулей, твердых схем и т. д.

Электронные устройства на полупроводниковых приборах практически безинерционны. Тщательно выполненный и хорошо герметизированный полупроводниковый прибор может служить десятки тыс. часов. Однако некоторые полупроводниковые материалы имеют малый температурный предел (например, германий), но не очень сложная температурная компенсация или замена основного материала прибора другим (напр., кремнием, карбидом кремния) в значительной, степени устраняет и этот недостаток. Совершенствование технологии изготовления полупроводниковых приборов приводит к уменьшению имеющихся еще разброса и нестабильности параметров.

Контакт полупроводник - металл и электронно-дырочный переход (n -р-переход), созданный в полупроводниках, используются при изготовлении полупроводниковых диодов. Двойные переходы (р-n -р или n -р-n ) - транзисторов и тиристоров. Эти приборы в основном применяются для выпрямления, генерации и усиления электрических сигналов.

На основе фотоэлектрических свойств полупроводников создают фотосопротивления, фотодиоды и фототранзисторы. Полупроводник служит активной частью генераторов (усилителей) колебаний . При пропускании электрического тока через p-n переход в прямом направлении, носители заряда - электроны и дырки - рекомбинируют с излучением фотонов, что используется при создании светодиодов.



Термоэлектрические свойства полупроводников позволили создать термосопротивления полупроводниковые, термоэлементы полупроводниковые, термобатареи и термоэлектрические генераторы, а термоэлектрическое охлаждение полупроводников, на основе эффекта Пельтье, - термоэлектрические холодильники и термостабилизаторы.

Полупроводники используются в безмашинных преобразователях тепловой и солнечной энергии в электрическую - термоэлектрических генераторах, и фотоэлектрических преобразователях (солнечных батареях).

Механическое напряжение, приложенное к полупроводнику, изменяет его электрическое сопротивление (эффект сильнее, чем в металлах), что явилось основой тензометра полупроводникового.

Полупроводниковые приборы получили широкое распространение в мировой практике, революционно преобразуя электронику, они служат основой при разработке и производстве:

    измерительной техники, компьютеров,

    аппаратуры для всех видов связи и транспорта,

    для автоматизации процессов в промышленности,

    устройств для научных исследований,

    ракетной техники,

    медицинской аппаратуры

    других электронных устройств и приборов.

Применение полупроводниковых приборов позволяет создавать новую аппаратуру и совершенствовать старую, приводит к значит, уменьшению ее габаритов, веса, потребляемых мощностей, а значит, уменьшению выделения тепла в схеме, к увеличению прочности, к немедленной готовности к действию, позволяет увеличить срок службы и надежность электронных устройств.

Ты, юный друг, современник технической революции во всех областях радиоэлектроники. Суть ее заключается в том, что на смену электронным лампам пришли полупроводниковые приборы, а их теперь все больше теснят микросхемы.

Предком одного из наиболее характерных представителей «армии» полупроводниковых приборов - транзистора - был так называемый генерирующий детектор, изобретенный еще в 1922 г. советским радиофизиком О. В. Лосевым. Этот прибор, представляющий собой кристалл полупроводника с двумя примыкающими к нему проволочками - проводниками, при определенных условиях мог генерировать и усиливать электрические колебания. Но он тогда из-за несовершенства не мог конкурировать с электронной лампой. Достойного полупроводникового соперника электронной лампе, названного транзистором, создали в 1948 г. американские ученые Браттейн, Бардин и Шокли. В нашей стране большой вклад в разработку полупроводниковых приборов внесли А. Ф. Иоффе, Л. Д. Ландау, Б. И. Давыдова, В.Е. Лошкарев и ряд других ученых и инженеров, многие научные коллективы.

Чтобы понять сущность явлений, происходящих в современных полупроводниковых приборах, нам придется «заглянуть» в структуру полупроводника, разобраться в причинах образования в нем электрического тока. Но перед этим хорошо бы тебе вспомнить ту часть первой беседы, где я рассказывал о строении атомов.

ПОЛУПРОВОДНИКИ И ИХ СВОЙСТВА

Напомню: по электрическим свойствам полупроводники занимают среднее место между проводниками и непроводниками тока. К сказанному добавлю, что к группе полупроводников относится гораздо больше веществ, чем к группам проводников и непроводников, взятых вместе. К полупроводникам, нашедшим практическое применение в технике, относятся германий, кремний, селен, закись меди и некоторые другие вещества. Но для полупроводниковых приборов используют в основном только германий и кремний.

Каковы наиболее характерные свойства полупроводников, отличающие их от проводников и непроводников тока? Электропроводность полупроводников сильно зависит от окружающей температуры. При очень низкой температуре, близкой к абсолютному нулю (- 273°С), они ведут себя по отношению к электрическому току как изоляторы. Большинство же проводников, наоборот, при такой температуре становятся сверхпроводимыми, т.е. почти не оказывают току никакого сопротивления. С повышением температуры проводников их сопротивление электрическому току увеличивается, а сопротивление полупроводников уменьшается. Электропроводность проводников не изменяется при действии на них света. Электропроводность же полупроводников под действием света, так называемая фотопроводность, повышается. Полупроводники могут преобразовывать энергию света в электрический ток. Проводникам же это совершенно не свойственно. Электропроводность полупроводников резко увеличивается при введении в них атомов некоторых других элементов. Электропроводность же проводников при введении в них примесей понижается. Эти и некоторые другие свойства полупроводников были известны сравнительно давно, однако широко использовать их стали сравнительно недавно.

Германий и кремний, являющиеся исходными материалами многих современных полупроводниковых приборов, имеют во внешних слоях своих оболочек по четыре валентных электрона. Всего же в атоме германия 32 электрона, а в атоме кремния 14. Но 28 электронов атома германия и 10 электронов атома кремния, находящиеся во внутренних слоях их оболочек, прочно удерживаются ядрами и ни при каких обстоятельствах не отрываются от них. Только четыре валентных электрона атомов этих полупроводников могут, да и то не всегда, стать свободными. Запомни: четыре! Атом же полупроводника, потерявший хотя бы один электрон, становится положительным ионом.

В полупроводнике атомы расположены в строгом порядке: каждый атом окружен четырьмя такими же атомами. Они к тому же расположены настолько близко друг к другу, что их валентные электроны образуют единые орбиты, проходящие вокруг всех соседних атомов, связывая их в единое вещество. Такую взаимосвязь атомов в кристалле полупроводника можно представить себе в виде плоской схемы, как показано на рис. 72, а. Здесь большие шарики со знаком « + » условно изображают ядра атомов с внутренними слоями электронной оболочки (положительные ионы), а маленькие шарики - валентные электроны. Каждый атом, как видишь, окружен четырьмя точно такими же атомами. Любой из атомов связан с каждым соседним двумя валентными электронами, один из которых «свой», а второй заимствован у «соседа». Это двухэлектронная, или валентная, связь. Самая прочная связь!

Рис. 72. Схема взаимосвязи атомов в кристалле полупроводника (а) и упрощенная схема его структуры (б)

В свою очередь, внешний слой электронной оболочки каждого атома содержит восемь электронов: четыре своих и по одному от четырех соседних атомов. Здесь уже невозможно различить, какой из валентных электронов в атоме «свой», а какой «чужой», поскольку они сделались общими. При такой связи атомов во всей массе кристалла германия или кремния можно считать, что кристалл полупроводника представляет собой одну большую молекулу.

Схему взаимосвязи атомов в полупроводнике можно для наглядности упростить, изобразив ее так, как это сделано на рис. 72, б. Здесь ядра атомов с внутренними электронными оболочками показаны в виде кружков со знаком плюс, а межатомные связи - двумя линиями, символизирующими валентные электроны.

Последние материалы раздела:

Кислотные свойства аминокислот
Кислотные свойства аминокислот

Cвойства аминокислот можно разделить на две группы: химические и физические.Химические свойства аминокислотВ зависимости от соединений,...

Экспедиции XVIII века Самые выдающиеся географические открытия 18 19 веков
Экспедиции XVIII века Самые выдающиеся географические открытия 18 19 веков

Географические открытия русских путешественников XVIII-XIX вв. Восемнадцатый век. Российская империя широко и вольно разворачивает плечи и...

Система управления временем Б
Система управления временем Б

Бюджетный дефицит и государственный долг. Финансирование бюджетного дефицита. Управление государственным долгом.В тот момент, когда управление...