Что такое инерция? Значение слова "инерция". Инерция твердого тела

Исаак Ньютон сформулировал закон инерции, который гласит, что если физическому телу ничего не мешает (равнодействующая всех сил рав­на нулю), то оно продолжит равномерное движение (инерция движения) или будет оставаться в состоянии покоя (инерция покоя).

Идея, заложенная в этом законе, оказалась настолько содержательной, что неявно получила статус универсальной. Ссылки на инерцию можно най­ти не только в физике, но и в психологии, экономике, во многих других на­уках и даже - в самой человеческой жизни.


С практической точки зрения, всякий раз, когда на основе ожидания продолжения чего-то прежнего прогнозируется будущее течение событий (цепь неприятностей или успехов, тенденция положения к ухудшению или улучшению и т.д.), - это, по существу, в той или иной форме и мере и есть ставка на закон инерции.

Неудивительно, что он давно уже обнаружен и в движении биржевых цен. Здесь любое развитие событий можно представить, как произвольную комбинацию двух состояний:
инерции покоя (результат отсутствия каких-либо заслуживаю­щих внимания информационных вводных);
инерции движения, которое когда-то возникло под воздействи­ем определенного импульса любой природы: макроэкономика, психология, слухи-страшилки, воля случая и т.д., а теперь, выйдя из периода покоя, продолжается.

В фактическом признании существования инерции применительно к поведению рынка преуспели и техники. Это выражается, в частности, в том, насколько высоко на пьедестал почета возведено явление тренда в дви­жении цен. В 60-х годах появился целый ряд научных работ, в которых при­водилось математическое обоснование существования тенденции и ее со­хранности. Идея тренда живет и здравствует по сей день.

Кроме того, надежды технических аналитиков именно на инерцию явно просматриваются в сигналах некоторых систем чтения поведения рынка.

Если рассматривать пространства случайных событий и, в частности, наше дополнительное измерение, то там, надо полагать, тоже действует какая-то своя инерция.

Таким образом, с методической точки зрения различные сценарии (конфи­гурации) развития событий в дополнительном измерении, в том числе и такие наиболее вероятные, как тренды и волны, удобно рассматривать в ка­честве проявления некой разновидности инерции, понимая, однако, су­ществующую здесь известную долю условности.

Как движение графика, так и его зависание (отсутствие вы­раженного направления) в дополнительном измерении - это разные проявления инерции.

В самом общем виде формулировка закона инерции применительно к дополнительному измерению может звучать примерно так:
если нечто (движение или покой) началось, то, скорее всего, оно будет продолжаться еще некоторое время.

Разумеется, в каждой конкретной серии испытаний будет складываться своя неповторимая конфигурация кривой. Но всегда можно обнаружить самые разнообразные следы инерции движения и/или покоя в виде тех или иных тенденций.

Это несложно увидеть на графике случайного блуждания, построенном по первым 1000 случайным числам:

На уровне микроскопического анализа приведенного рисунка мож­но видеть многократные переходы инерции движения в зависание и обратно.

С прикладной точки зрения важность данного закона заключается в том, что он позволяет внести в хаос случайности долю упорядочен­ности.

Иначе говоря, если в движении кривой дополнительного измерения обнаруживаются элементы порядка, то, исходя из закона инерции, можно строить расчет на наиболее вероятном сценарии - сохранение текущего положения в течение какого-то времени. Именно на этой основе можно за­ тем принимать соответствующие практические решения.

О каком порядке может идти речь в условиях неопределенности?

Действи­тельно, всякое упоминание упорядоченности при рассмотрении случайных событий может показаться весьма неуместным.

И все же, своя упорядоченность в случайных событиях существует.

Она вполне зримо проявляется хотя бы в том, что, согласно расчетам, в рам­ках принятой математической модели есть только два наиболее вероятных сценария развития событий (тренд и полуволна).

Можно обозначить по крайней мере три источника упорядоченности, проявляющейся в виде закона инерции:
случайные совпадения (иногда они складываются в удивитель­но осмысленный порядок);
исходное соотношение исходных вероятностей преимуществен­ но в пользу успеха (р) или неудачи (q), что заранее опреде­ляет упорядоченное тяготение исходов к соответствующему сум­марному результату (менее вероятное событие будет происхо­дить реже, чем более вероятный исход) ;
удачливость игрока, которая проявляет себя в конфигурации, со­гласно теоремам арксинуса (в классической теории вероятнос­тей говорится об относительной трудности возвращения точ­ки блуждания в начало координат, поскольку, согласно объяс­нению В. Феллера, если уж точка случайно отклонилась от нулевого уровня, то ей труднее вернуться обратно).

Итак, хотя пуассоновское блуждание беспамятно, оно подчиняется за­кону инерции движения, который проявляется, прежде всего, в том, что всякое состояние (некое направление движения или покой) может продол­жаться еще в течение некоторого времени, так сказать, по инерции.

Коротко говоря, благодаря закону инерции случайные пространства вы­глядят не столь уж хаотично.

Конечно, вероятностный характер этой упорядоченности означает и не­ определенность. В заданной серии испытаний неопределенность возникает по двум основным пунктам:
какая тенденция будет иметь место;
как долго она будет продолжаться.

И на сей счет мы можем делать лишь вероятностные суждения исходя из действующих закономерностей чисто случайных пространств.

Под тенденцией в расширительном понимании мы имеем в виду не только сохранение определенных графических фигур, по которым можно судить о направлении будущего движения или покое.

Проявления инерции можно ожидать также и в тенденции к сохра­нению во времени любых обнаруженных правил или закономерностей блуждания, которые носят не только графический, но и какой-то иной характер.

Время действия инерции.

Это наиболее важный параметр, от которого зависит процесс принятия решений в дополнительном измерении.

Сразу подчеркнем, что продолжительность времени действия инерции как параметра, имеющего конкретную величину, - явление само по себе неопределенное. Мы никогда заранее не знаем не только то, какого вида инерция возникнет в следующий момент, но и сколько она будет длиться. Мож­но быть уверенным только в том, что это, как принято говорить при ана­лизе поведения рынка, будет продолжаться до тех пор, пока не закончится.

Мы рассматриваем время действия инерции как величину чисто случайную, которая, следовательно, сама должна подчиняться закону инер­ции и всем действующим вероятностным закономерностям.

Методические следствия: Рождение и смерть разных тенденций в дополнительном измерении происходит по воле случая, который будет да­вать о себе знать все новыми вариантами. Важно суметь вовремя их обнару­жить и оседлать.

Рассмотренные выше понятия и закономерности, которым подчиняются наиболее вероятные конфигурации кривой в дополнительном измерении, в качестве следствий позволяют сформулировать, по меньшей мере, два вы­вода, имеющих непосредственное методическое приложение.

Первое следствие:
если в ходе наблюдения обнаруживается некоторая тенденция к сохранению определенного направления движения, то, вероят­нее всего, оно будет по инерции продолжаться.

Поэтому второе следствие:
если на каком-то этапе наблюдения обнаруживается неопреде­ленность в направлении (отсутствие тенденции), то она будет по инерции сохраняться в течение некоторого времени.

Кроме того, если понимание инерции применять к более широкому кругу явлений, то сказанное выше можно дополнить еще следующим положением:
если при анализе случайного движения на каком-то участке на­блюдения удается выявить какую-то частную закономерность или неопределенность, то такая ситуация, вероятнее всего, бу­дет сохранять свою инерцию в течение еще некоторого про­странственно-временного периода.

Особо подчеркнем, что для предметной разработки методов необходимо с помощью достаточно понятных и однозначно понимаемых критериев точ­но определить понятия тенденция и неопределенность движения.

При этом придется прояснить содержание параметров наблюдения, ко­торые описывают те пределы, где:
кончается неопределенность и начинается направление движения;
кончается выраженность направления движения и начинается неопределенность.

Если в этих понятиях не будет достигнуто необходимой четкости, то затруднительной станет и разработка соответствующих прикладных методик.

Наконец, затронем еще один методический вопрос, который возникает в связи с практическим приложением закона инерции: имеет ли дополни­тельное измерение преимущества в сравнении с применением закона не­посредственно в традиционных пространствах?

На наш взгляд, ответ положительный.

Причина в том, что в дополнительном измерении, как уже ранее подчер­кивалось, действует только воля чистого случая. В то же время чистота традиционных пространств в этом смысле значительно подпорчена пси­хологией участников рынка.

Что такое теория относительности Ландау Лев Давидович

Закон инерции

Закон инерции

Из принципа относительности движения вытекает, что тело, на которое не действует никакая внешняя сила, может находиться не только в состоянии покоя, но и в состоянии прямолинейного равномерного движения. Это положение в физике называется законом инерции.

Однако в повседневной жизни он как бы завуалирован и непосредственно не проявляется. Ведь по закону инерции тело, находящееся в состоянии прямолинейного равномерного движения, должно - и без воздействия внешних сил - продолжать свое движение без конца. Однако из наблюдений нам известно, что тела, к которым мы силы не прилагаем, останавливаются.

Разгадка заключается в том, что на все тела, наблюдаемые нами, действуют некоторые внешние силы - силы трения. Поэтому условие, необходимое для наблюдения закона инерции - отсутствие внешних сил, действующих на тело, - не выполняется. Но, улучшая условия опыта, уменьшая силы трения, можно приблизиться к идеальным условиям, необходимым для наблюдения закона инерции, доказав, таким образом, правильность этого закона и для движений, наблюдаемых в повседневной жизни.

Открытие принципа относительности движения является одним из величайших открытий. Без него развитие физики было бы невозможно. Этим открытием мы обязаны гению Галилео Галилея, смело выступившего против господствовавшего в те времена и поддерживаемого авторитетом католической церкви учения Аристотеля, согласно которому движение возможно только при наличии силы и без нее должно неминуемо прекратиться. Рядом блестящих опытов Галилей показал, что причиной остановки движущихся тел, наоборот, является сила трения и в отсутствие этой силы приведенное раз в движение тело двигалось бы вечно.

Из книги Физики продолжают шутить автора Конобеев Юрий

Закон Мэрфи Дональд МИЧИ Я думаю, что самое глубокое и прочное впечатление в своей жизни каждый научный работник получает от того, как неожиданно, как несправедливо, как удручающе трудно хоть что-нибудь открыть или доказать. Многих осложнений и разочарований можно было

Из книги Физическая химия: конспект лекций автора Березовчук А В

7. Закон Генри Фугитивность растворителя в разбавленном растворе не зависит от природы растворенного вещества и вычисляется по закону Рауля, то есть: Так как фугитивность жидкости или твердого раствора равна фугитивности насыщенного пара, когда растворитель в

Из книги Тайны пространства и времени автора Комаров Виктор

2. Закон Гесса При изобарных и изохорных условиях теплота является функцией состояния.В 1840 г. Г. Н. Гесс формулирует закон: «Тепловой эффект химической реакции не зависит от промежуточных стадий, а зависит только от начального и конечного состояния системы».?QP = dH,?QV = dUвн,QP =

Из книги Движение. Теплота автора Китайгородский Александр Исаакович

Из книги История лазера автора Бертолотти Марио

Закон сохранения массы Если растворить сахар в воде, то масса раствора будет строго равна сумме масс сахара и воды.Этот и бесчисленное количество подобных опытов показывают, что масса тела есть неизменное свойство. При любом дроблении и при растворении масса остается

Из книги Кто изобрел современную физику? От маятника Галилея до квантовой гравитации автора Горелик Геннадий Ефимович

Закон инерции Не приходится спорить – инерциальная система отсчета удобна и обладает неоценимыми преимуществами.Но единственная ли это система или, может быть, существует много инерциальных систем? Древние греки, например, стояли на первой точке зрения. В их сочинениях

Из книги Гравитация [От хрустальных сфер до кротовых нор] автора Петров Александр Николаевич

Закон сохранения импульса Произведение массы тела на его скорость называется импульсом тела (другое название – количество движения). Так как скорость – вектор, то и импульс является векторной величиной. Разумеется, направление импульса совпадает с направлением

Из книги автора

Центр инерции Вполне законно задать вопрос: где находится центр тяжести группы тел? Если на плоту много людей, то от места нахождения их общего центра тяжести (вместе с плотом) будет зависеть устойчивость плота.Смысл понятия остается тем же. Центр тяжести есть точка

Из книги автора

Закон Архимеда Подвесим гири к безмену. Пружина растянется и покажет вес гири. Не снимая гири с безмена, опустим ее в воду. Изменится ли показание безмена? Да, вес тела как бы уменьшится. Если опыт проделать с килограммовой железной гирей, то «уменьшение» веса составит

Из книги автора

Закон Авогадро Пусть вещество представляет собой смесь различных молекул. Нет ли такой физической величины, характеризующей движение, которая была бы одинакова для всех этих молекул, например для водорода и кислорода, находящихся при одинаковой температуре?Механика

Из книги автора

Закон преломления В работе Dioptrique Декарт излагает свою теорию света, основанную на вихрях, и обсуждает законы отражения и преломления, впервые выразив принцип, что отношение углов падения и преломления зависит от среды, через которую проходит свет.Уже греки знали, что

Из книги автора

Закон Рэлея К концу 1899 г. были проведены более точные измерения в области более длинных волн, которые показали, что в этой области закон Вина уже несправедлив. В июне того же года лорд Рэлей (который был при рождении Джоном Вильямом Стрэтгом (1842-1919)) опубликовал вывод закона

Из книги автора

Закон Планка Теоретическая ситуация, как описывают, была следующей. Когда в воскресенье 7 октября 1900 г. X. Рубенс со своей женой посетил Планков, он рассказал Планку об измерениях на длинах волн до 50 мкм, которые он произвел вместе с Ф. Курлбаумом в Берлинском институте. Эти

Из книги автора

Из книги автора

Закон красного смещения Эта история началась с замечательного открытия, сделанного в 1908 году Генриеттой Ливитт, которая тогда не была еще астрономом. Она смотрела не вверх, в звездное небо, а вниз - на фотопластинки, сделанные в Гарвардской обсерватории за много лет. В те

Из книги автора

Закон Ньютона Закон всемирного тяготения после обсуждения в третьем чтении был отправлен на доработку… Фольклор Проверка закона Ньютона. Осмысление закона Ньютона до сих пор играет очень важную роль для осмысления представлений о гравитации вообще. Как можно

Наблюдения и опыт показывают, что тела получают ускорение относительно Земли, т. е. изменяют свою скорость относительно Земли, только при действии на них других тел. Каждый раз, когда какое-либо тело получает ускорение по отношению к Земле, можно указать другое тело, которое это ускорение вызвало. Например, бросаемый мяч приходит в движение, т. е. получает ускорение, под действием мышц руки. Ловя мяч, мы замедляем и останавливаем его, также действуя на него рукой. Пробка воздушного «пистолета» (рис. 53) приходит в движение под действием воздуха, сжимаемого вдвигаемым поршнем. Пуля, вылетающая с большой скоростью под действием пороховых газов, постепенно уменьшает свою скорость под действием воздуха. Скорость камня, брошенного вверх, уменьшается под действием силы притяжения Земли; затем камень останавливается и начинает двигаться вниз со все увеличивающейся скоростью (также вследствие притяжения Земли).

Рис. 53. Воздушный «пистолет»

Во всех этих и других подобных случаях изменение скорости, т. е. возникновение ускорения, есть результат действия на данное тело других тел, причем в одних случаях это действие проявляется при непосредственном соприкосновении (рука, сжатый воздух), а в других - на расстоянии (воздействие Земли на камень).

Что же будет происходить, если на данное тело никакие другие тела не действуют? В этом случае тело будет либо оставаться в покое относительно Земли, либо двигаться относительно нее равномерно и прямолинейно, т. е. без ускорения. Проверить простыми опытами, что в отсутствие действия других тел данное тело движется относительно Земли без ускорений, практически невозможно, потому что невозможно полностью устранить действия всех окружающих тел. Но чем тщательнее устранены эти действия, тем ближе движение данного тела к равномерному и прямолинейному.

Труднее всего устранить действие трения, возникающего между движущимся телом и подставкой, по которой оно катится или скользит, или средой (воздух, вода), в которой оно движется. Так, стальной шарик, катящийся по горизонтальной поверхности, посыпанной песком, останавливается очень быстро. Но если шарик хорошо отполирован, то, катясь по гладкой, например стеклянной, поверхности, он довольно долго сохранит свою скорость почти неизменной.

В некоторых физических приборах удается осуществить движение элементарных частиц, при котором каждая частица практически не испытывает действия никаких других частиц вещества (для этого из прибора необходимо тщательно удалить воздух). В этих условиях движение частиц очень близко к прямолинейному и равномерному (благодаря большой скорости и малой массе частиц притяжение Земли в таких опытах практически не сказывается).

Тщательные опыты по изучению движения тел были впервые произведены Галилеем в конце XVI и начале XVII веков. Они позволили установить следующий основной закон.

Если на тело не действуют никакие другие тела, то тело сохраняет состояние покоя или равномерного прямолинейного движения относительно Земли.

Как при покое, так и при равномерном прямолинейном движении ускорение отсутствует. Следовательно, закон, установленный Галилеем, означает: чтобы тело двигалось с ускорением относительно Земли, на него должны действовать другие тела. Причина ускорения - это действие других тел.

Свойство тел сохранять свою скорость при отсутствии действия на них других тел называют инерцией тел (от латинского слова inertia - бездеятельность, косность). Поэтому и указанный закон называют законом инерции, а движение при отсутствии действия на тело других тел называют движением по инерции.

Закон инерции явился первым шагом в установлении основных законов механики, в то время еще совершенно неясных. Впоследствии (в конце XVII века) великий английский математик и физик Исаак Ньютон (1643-1727), формулируя общие законы движения тел, включил в их число закон инерции в качестве первого закона движения. Закон инерции часто называют поэтому первым законом Ньютона.

Итак, тела получают ускорения под действием других тел. Если действия, оказываемые на разные части тела, различны, то эти части получат разные ускорения и через некоторое время приобретут различные скорости. В результате может измениться сам характер движения тела в целом. Например, при резком изменении скорости вагона трение о пол будет увлекать за собой ноги пассажира, но ни на туловище, ни на голову никакого действия со стороны пола оказано не будет, и эти части тела будут продолжать двигаться по инерции. Поэтому, например, при торможении вагона скорость ног уменьшится, а туловище и голова, скорость которых останется без изменений, опередят ноги; в результате тело пассажира наклонится вперед по движению. Наоборот, при резком увеличении скорости вагона туловище и голова, сохраняя по инерции прежнюю скорость, отстанут от ног, увлекаемых вагоном, и тело пассажира отклонится назад. Подобные проявления инерции тел широко используются в технике и в быту. Вытряхивание пыльной тряпки, стряхивание лишней капли чернил с пера, стряхивание столбика ртути в медицинском термометре - все эти действия используют инерцию тел (частиц пыли, капли чернил, ртути в капилляре термометра).

Инерция использована и при устройстве взрывателей артиллерийских снарядов. Когда снаряд, ударяясь о препятствие, внезапно останавливается, взрывной капсюль, помещающийся внутри снаряда, но не связанный жестко с его корпусом, продолжает двигаться и ударяется о жало взрывателя, связанного с корпусом.

Ньютон дал следующую формулировку закона инерции : “Всякое тело продолжает удерживаться в своем состоянии покоя или равномерного и прямолинейного движения, пока и поскольку оно не понуждается приложенными силами изменить это состояние”.
Историю закона инерции следует начать с Галилея, так как до него понятия движения тел по инерции не было. Аристотель, например, утверждал, что для поддержания движения свободного тела к нему необходимо постоянно прикладывать силу. Галилей в своей работе “Диалоги о двух важнейших системах мира, птолемеевой и коперниковой” утверждал : “Когда тело движется по горизонтальной плоскости, не встречая никакого сопротивления, то… движение его является равномерным и продолжалось бы бесконечно, если бы плоскость простиралась в пространстве без конца”.
Позже Р. Декарт сформулировал закон инерции в виде двух законов природы : “Первый закон природы: всякая вещь пребывает в том состоянии, в каком она находится, пока ее что-либо не изменит”.
“Второй закон природы: всякое движущееся тело стремится продолжать свое движение по прямой”.
И еще : “…каждая частица материи в отдельности продолжает находиться в одном и том же состоянии до тех пор, пока столкновение с другими частицами не вынуждает ее изменить это состояние…раз уже она начала двигаться, то будет продолжать это движение постоянно с равной силой до тех пор, пока другие ее не остановят или не замедлят ее движение”.
Приведенные формулировки закона инерции, данные Декартом, по своей сути почти ничем не отличаются от формулировки И.Ньютона, за исключением второго закона природы, который можно отнести к каждому моменту движения тела при наличии действующих на него сил. Целесообразность такой формулировки закона инерции –будет показана ниже.
В одной из современных формулировок закон инерции выглядит так : “Если на материальную точку не действуют силы, то она сохраняет состояние покоя или равномерного и прямолинейного движения”.
Данная формулировка закона инерции очень похожа на формулировку И.Ньютона, но с одной только разницей: у Ньютона речь идет о теле, а здесь – о материальной точке. И это, на первый взгляд, не существенное различие, на самом деле является принципиальным.
Во-первых, понятие материальной точки является условным, поскольку в природе таких материальных объектов нет. Поэтому создателям механики и в голову не могло прийти сравнивать реальные тела с математической точкой, то есть с фикцией. Другое дело, что движение тел во многих случаях можно было описать как движение одной его точки, за которую принимался центр масс тела. Однако, некритическое отношение к этому вопросу привело в дальнейшем уже к принципиальному убеждению, что законы механики относятся только к материальной точке или к системе материальных точек, а не к реальным телам. Хотя ясно, что точка остается точкой, если ее даже и назвать материальной. И этим самым развитию механики был поставлен труднопреодолимый барьер. Ниже этот вопрос будет обсуждаться подробнее.
Во-вторых, отнесение закона инерции к движению только материальной точки приводит к тому, что сам этот закон также становится фикцией, так как движутся все-таки реальные тела, состоящие из атомов, а в атомах имеются ядра и электроны, которые вращаются вокруг своих осей, а электроны еще и вокруг ядер, причем в целом довольно хаотично. И если средневековые ученые могли еще думать, что все частицы любого тела могут двигаться с одинаковыми скоростями, поскольку они не знали, что все тела состоят из атомов, то современные ученые должны этот факт учитывать.
Таким образом, к закону движения по инерции может быть два варианта отношения: или считать его условным, фиктивным, или учесть реальность и относить его к реальным телам, а не к точкам. При этом необходимо учесть и тот факт, что движения материальных объектов без силового воздействия на них в природе практически не существует.
Такая постановка вопроса приводит к необходимости осмысления новой сущности закона инерции и изменения его формулировки. В §4 первой главы мы уже говорили о необходимости представить этот закон в дифференциальной форме, то есть считать его справедливым, для любого момента движения материальных объектов, независимо от характера этого движения. Сейчас мы сделаем некоторые уточнения для предложенной там формулировки. Это связано, во-первых, с тем, что любое материальное тело представляет собой совокупность частиц, которые в одно и то же время могут иметь разные скорости и ускорения, как, например, во вращательном движении. И, во-вторых, необходимо иметь в виду, что силовое воздействие на тело и его частицы обусловлено подводом энергии
Тогда закон инерции можно сформулировать следующим образом:
– Инерция – это стремление тела, как единого целого сохранить состояние покоя или скорость (энергию) своего движения в любой момент этого движения как при действии на него сил, так и при отсутствии такого воздействия; при прекращении силового воздействия тело будет двигаться в соответствии с имеющейся у него на данный момент скоростью в любой выбранной системе отсчета.
Можно дать и другую формулировку закона инерции:
– В любой момент своего движения материальный объект стремится двигаться с имеющейся у него на данный момент скоростью (энергией) независимо от выбранной системы отсчета, и только внешние воздействия препятствуют такому движению.
Ярким подтверждением справедливости дифференциальной трактовки закона инерции является движение тел по окружности, не связанных жестко с центром вращения, как, например, при движении планет вокруг Солнца (в главе III будет показано, что движение планет вокруг Солнца можно считать вращательным движением). В популярной литературе это движение часто объясняется так: за счет притяжения Солнца планеты падают на него, но наличие у них скорости в касательном направлении смещает планету в сторону, в результате чего и получается движение по окружности (приближенно). С точки же зрения закона инерции круговой характер движения планет следует объяснять таким образом: в любой момент своего движения планета стремится двигаться по направлению имеющейся у нее на данный момент скорости, но под действием притяжения Солнца в каждый момент движения происходит изменение этой скорости (при круговом вращательном движении меняется только направление скорости), в результате чего траектория движения искривляется и становится окружностью при постоянной действующей силе. Здесь следует подчеркнуть, что основное движение планет это движение по инерции, а сила притяжения со стороны Солнца только искривляет траекторию этого движения.
Таким образом, если бы не было инерции у тел, то их движение всегда происходило бы только по направлению действующих на них сил.
Трактовка закона инерции в дифференциальной форме ставит также вопрос и о причинах его существования, то есть о его физической сущности. То, что тела при отсутствии на них силового воздействия должны двигаться с постоянной скоростью, нам понятно, так как при наличии сил появляется ускорение. Но движение по инерции пусть и мгновенное при постоянном силовом воздействии требует осмысления. Здесь, очевидно, следует сравнивать кинетические энергии, связанные с инерционным движением и силовым воздействием. Поскольку любое тело при движении имеет какую-то скорость, то оно имеет и определенную кинетическую энергию. Силовое воздействие тоже связано с затратами энергии. Из опыта нам известно, что чем больше будет сила, приложенная к движущемуся телу, тем сильнее изменится характер его движения. Это значит, что чем больше будет подведенная к телу энергия по сравнению с энергией его движения, тем больше будет ее влияние на характер движения тела. Поэтому можно утверждать, что инерция движущегося тела определяется его кинетической энергией. Именно соотношение кинетической энергии тела и энергии силового воздействия определяет закон движения тела.
Найдем затраты энергии на искривление траектории при вращательном движении тел. К телу, движущемуся по окружности (рис.1), подводится энергия в радиальном направлении, в результате чего изменяется направление его скорости, но не ее величина. Можно ли в этом случае сказать, что происходит изменение кинетической энергии тела? Если иметь в виду только ее величину, то нет. Если же учитывать направленность кинетической энергии, то да. Этот пример является еще одним подтверждением направленности кинетической энергии, ее векторной сущности при движении тел и их взаимодействии, потому что для изменения направления движения необходимо приложить силу, то есть подвести добавочную энергию в определенном направлении. Величина радиальной (центростремительной) силы определяется величиной изменения кинетической энергии тела , отнесенной к величине его радиального перемещения при угле поворота . Изменение кинетической энергии тела будет равно подведенной к нему энергии :
, (1)
где m – масса тела, - изменение окружной скорости тела при угле поворота от начального положения.
В соответствии с рис.1,б имеем:
, (2)
где V – окружная скорость тела.
Центростремительная сила определяется отношением при , где в соответствии с рис.1,а будет равно:
(3)
Тогда:
(4)
Затраты кинетической энергии определим, представив выражение (1) с учетом выражения (2) в виде:

(5)
Последовательно увеличивая значение угла в 2, 3,…n раз, придем к формуле:
, (6)
где за один полный оборот число шагов n будет равно:
(7)
В соответствии с формулой (6) затраты кинетической энергии при вращательном движении графически представлены на рис.2. Поскольку энергия все время потребляется, то максимальное значение энергии , соответствующее половине оборота, следует удвоить, чтобы найти затраты энергии за полный оборот.
Тогда, имея в виду, что для половины оборота , получим:
(8)
Таким образом, чтобы заставить тело двигаться по окружности, к нему надо подвести энергию в 8 раз большую, чем его собственная энергия движения.
Интересно также отметить следующий результат, вытекающий из полученного нами соотношения. Поскольку затраты энергии можно определить через работу центростремительной силы:
, (9)
где S – перемещение точки приложения силы, соответствующее направлению ее действия.
Используя выражения (8) и (4), получим:
(10)
Отсюда следует, что перемещение S представляет собой два диаметра окружности радиуса r , а работа центростремительной силы будет определяться кратчайшим расстоянием между наиболее удаленными точками окружности при движении тела сперва в одну (удаление), а затем другую (приближение) стороны от его начального положения.
Таким образом, инерцию тела можно определить как его стремление сохранить свою кинетическую энергию при внешнем воздействии. Характер движения тела будет зависеть от соотношения его собственной кинетической энергии и энергии, к нему подведенной. При этом характер движения будет зависеть не только от величины подведенной энергии, но и от направления ее подведения.
Если к телу не подводится никакой энергии, то его энергия не изменяется и оно движется с постоянной по величине и направлению скоростью. Однако, здесь следует иметь в виду, что так можно говорить, если рассматривать тело как единое целое. Если же иметь в виду и частички, из которых состоит тело (электроны и ядра), то для них такое утверждение будет неверно, так как они движутся с переменными скоростями и ускорениями. Очевидно, о постоянстве скорости можно говорить только для центра масс тела. А в целом о теле можно сказать только, что оно движется с постоянной энергией, так как энергия его частичек тоже не меняется. При таком определении инерции не исключается возможность и вращательного движения тела по инерции с постоянной угловой скоростью, или даже сочетание его прямолинейного движения с постоянной скоростью и вращения вокруг центра масс с постоянной угловой скоростью.
Что касается затрат энергии на вращение частичек тела, то противоположно расположенные частички взаимно воздействуют друг на друга (без внешнего воздействия), в связи с чем затрат энергии не происходит.
В свете всего сказанного выше закон инерции Ньютона можно считать интегральным законом, справедливым для конечных промежутков времени. Этот закон можно обобщить и на случай вращательного движения, сформулировав его следующим образом:
– Всякое тело продолжает удерживаться в своем состоянии покоя или равномерного прямолинейного или равномерного вращательного движения пока в результате взаимодействий не изменится его кинетическая энергия.
Таким образом, мы расширили существующее понятие интегрального закона инерции, обобщив его и на равномерное вращательное движение и связав его с постоянством кинетической энергии тела. Причем сделали мы это в классической традиции, связав его с постоянством скорости движения тел. Скорость движения будет постоянной как при отсутствии действия на тело каких-либо сил, так и при действии на него уравновешенной системы сил. Это обстоятельство учитывается в ряде современных формулировок закона инерции. Приведем наиболее развернутую характеристику закона инерции, данную в физической энциклопедии : “Инертность (инерция) (от лат. iners , род. падеж inertis – бездеятельный) в механике – свойство материальных тел, проявляющееся в том, что тело сохраняет неизменным состояние своего движения или покоя по отношению к т. н. Инерциальной системе отсчета, когда внешние воздействия на тело (силы) отсутствуют или взаимно уравновешиваются. Если же на тело действует неуравновешенная система сил, то свойство инертности сказывается в том, что изменение состояния покоя или движения тела, то есть изменение скоростей его точек, происходит постепенно, а не мгновенно; при этом движение изменяется тем медленнее, чем больше инертность тела. Мерой инертности тела является его масса”.
Не будем подробно анализировать эту формулировку, обратим внимание только на утверждение о соответствии закону инерции движения тела под действием уравновешенной системы сил. Такое утверждение вызывает сомнения. Действительно, можно ли назвать движением по инерции движение автомобиля с работающим двигателем, хотя он и движется с постоянной скоростью? Ведь при таком движении происходят затраты энергии, внешней по отношению к автомобилю. Это обстоятельство заставляет задуматься при рассмотрении закона инерции с энергетических позиций. Сомнительно, чтобы движение по инерции было связано с затратами внешней энергии. Рассмотрим с этой точки зрения еще несколько примеров. Вернемся снова к движению планет по их орбитам. Предположим для упрощения, что орбиты будут круговыми. Тогда на планеты силы тяготения будут действовать только в радиальном направлении, в касательном же направлении никаких сил не будет и, значит, не будет затрат энергии. В этом случае возникает желание назвать движение в касательном направлении движением по инерции. Но тогда получается, что движение одного и того же тела (планеты) будет одновременно и по инерции в касательном направлении, при котором величина скорости будет постоянной и не инерционным в радиальном направлении, так как при этом будет изменяться направление скорости и будет затрачиваться внешняя энергия (энергия Солнца). Очевидно, что два указанных направления должны быть взаимно перпендикулярными, так как только тогда взаимодействия в этих направлениях не будут влиять друг на друга.
Рассмотрим теперь движение автомобиля с отключенным двигателем, то есть движение накатом, когда на машину действует только сила сопротивления. Машина при этом тормозится, а скорость ее уменьшается. Движение машины в этом случае происходит за счет ее собственной кинетической энергии без использования внешней энергии. Возникает вопрос: можно ли такое движение назвать движением по инерции? Если исходить из классической формулировки закона инерции, то нет. Если же попытаться понять сущность такого движения, то кроме собственной инерции у тела ничего нет, что заставляло бы его двигаться. Значит, именно инерция тела, связанная с его запасом кинетической энергии, заставляет тело продолжать движение до тех пор, пока не будет исчерпан весь ее запас. Если же это так, то такое движение тоже следует считать движением по инерции.
В связи со всем изложенным закон инерции в интегральной форме можно сформулировать следующим образом:
– Если в каком-либо направлении движение тела происходит без затрат внешней энергии или за счет собственной кинетической энергии, такое движение будет движением по инерции.
Под данное определение будут подходить прямолинейное и вращательное движения, совместное вращательное и прямолинейное движения без затрат внешней энергии и при торможении, вращение планет вокруг Солнца и т. п.
Автор выносит на обсуждение такое понимание сущности закона инерции.
И, наконец, следует подчеркнуть важное следствие, имеющее место при использовании закона инерции в дифференциальной форме: в случае реальности сил инерции все системы отсчета – инерциальные и неинерциальные – можно считать равноправными, так как в любой из них будут выполняться все законы механики.

> Первый закон Ньютона: инерция

Первый закон Ньютона и инерция . Изучите основы механики Ньютона, момент инерции движения в физике, формулировка и формула первого закона, инерциальная система.

Первый закон движения Ньютона концентрируется на инерции. Тело в состоянии покоя будет оставаться стабильным, а смещающийся объект продолжит движение.

Задача обучения

  • Разобраться в Первом законе движения.

Основные пункты

  • Три закона физики Ньютона составляют основу механики.
  • Первый закон гласит: тело в состоянии покоя останется стабильным, пока на него не повлияет внешняя сила, также и движущееся тело останется в движении, пока не почувствует внешнее воздействие.
  • Чистая внешняя сила – сумма всех факторов, влияющих на объект.
  • Наличие воздействующих сил не означает присутствие чистой внешней силы. Одинаковые по величине силы, но действующие в противоположных направлениях, могут отменить друг друга.
  • Трение – сила между перемещающимся телом и поверхностью. Это внешняя сила, влияющая на замедление.
  • Инерция – тенденция тела в движении продолжать двигаться. Зависит от массы, поэтому чем тяжелее тело, тем сложнее изменить направление движения.

Термины

  • Инертность – свойство объекта, которое вступает в сопротивление с любой трансформацией текущего положения (эквивалентно массе).
  • Равномерное движение – перемещение с неизменной скоростью.
  • Трение – сила, сопротивляющаяся относительному движению.

История

Исаак Ньютон интересовался перемещением объектов в различных условиях. В 1687 году он описал три знаменитых закона движения, применимых для характеристики физических объектов и систем. Они составляют основу механики и описывают связь сил, воздействующих на тело, и вызванные этим движения. Три закона гласят:

Если объект не испытывает никакого силового влияния, то скорость останется стабильной. Если объект пребывает в покое, то скорость равняется нулю.

Ускорение параллельно и прямо пропорционально чистой силе, влияющей на объект, и находится в направлении чистой силы и обратно пропорционально массе.

Если первый объект влияет силой на второй, то тот одновременно влияет на первый. То есть их силы одинаковы по величине и противоположны по направлению.

Первый закон движения

Итак, тело пребывает в движении или покое, пока на него не воздействует внешняя сила. То есть, движущееся тело сохранит свою скорость, если на него ничего не влияет. Это именуют равномерным движением.

Примеры

Давайте разберем Первый закон Ньютона в конкретной системе отсчета. Представьте, что вы едете на коньках в инерциальной системе. Если оттолкнетесь от одного борта, то по Первому закону Ньютона должны прибыть ко второму. Но этого не случится. Не забывайте, что движение продолжается, если на него не влияет внешняя сила. В нашем мире этой силой чаще всего выступает трение. В данном случае – трение между коньками и льдом.

А как насчет ремней безопасности? В случае автомобильной аварии, они должны защитить нас. Допустим, машина едет со скоростью 60 миль/ч. Если резко затормозить, то машина ощущает внешнюю силу и замедляется. Но на водителя это не действует, поэтому он продолжит перемещаться на прежней скорости. Ремень создает противовес и тормозит человека.

Инертность

Иногда этот закон именуют законом инерции или инерциальной системой отсчета. Она выступает свойством тела фиксироваться в состоянии покоя или смещения (с постоянной скоростью). У некоторых инерция больше, потому что эквивалентна массе. Поэтому сложнее изменить направление валуна, чем шарика для гольфа.

Последние материалы раздела:

Кир II Великий - основатель Персидской империи
Кир II Великий - основатель Персидской империи

Основателем Персидской державы признается Кир II, которого за его деяния называют также Киром Великим. Приход к власти Кир II происходил из...

Длины световых волн. Длина волны. Красный цвет – нижняя граница видимого спектра Видимое излучение диапазон длин волн в метрах
Длины световых волн. Длина волны. Красный цвет – нижняя граница видимого спектра Видимое излучение диапазон длин волн в метрах

Соответствует какое-либо монохроматическое излучение . Такие оттенки, как розовый , бежевый или пурпурный образуются только в результате смешения...

Николай Некрасов — Дедушка: Стих
Николай Некрасов — Дедушка: Стих

Николай Алексеевич НекрасовГод написания: 1870Жанр произведения: поэмаГлавные герои: мальчик Саша и его дед-декабрист Очень коротко основную...