Черты будущего — почему мы не полетим к звездам. Возможны ли межзвездные перелеты

Правообладатель иллюстрации AP Image caption В настоящем космосе трудно выглядеть так же хорошо, как это получилось у Сандры Буллок в кино

Многие мечтают о полете на орбиту, на Луну, а то и дальше. Но те, кто на самом деле отправляется в космос, сталкиваются с рядом опасностей для здоровья.

По словам врача из культового сериала "Звездный путь" Леонарда Маккоя (он же Костоправ, он же Костлявый), "космос - это болезни и опасности в обертке тьмы и безмолвия". И он во многом прав. Путешествие в космосе может сделать вас слабым, усталым, больным и, с определенной долей вероятности, страдающим от депрессии.

"Мы не приспособлены к существованию в безвоздушном пространстве, наша эволюция не включала в себя подобное", - говорит Кевин Фонг, основатель Центра изучения медицины в экстремальных условиях, в космосе и на больших высотах Университетского колледжа в Лондоне и автор книги "Предел. Жизнь, смерть и возможности человеческого тела".

Представим, что вам посчастливилось-таки полететь в космос. И вот вы лежите в кресле и считаете секунды до старта. Чего вам стоит ждать от своего тела? Как оно поведет себя в ближайшие минуты, часы, дни и месяцы? Мы спросили об этом ученых, инженеров и астронавтов, которые по опыту знают, что происходит с человеком в условиях, когда наш организм находится в совершенно искусственной, чуждой для него ситуации. Как с этим справляться?

10 секунд после старта. Возможная потеря сознания

Космический аппарат отделяется от пускового комплекса, и ускорение возрастает до 4G. Вы чувствуете себя в четыре раза тяжелее своего нормального веса. Вас вдавливает в кресло, очень трудно даже шевельнуть рукой.

"Из-за перегрузки кровь смещается в ноги, и, чтобы оставаться в сознании, нам нужно обеспечивать кровоснабжение мозга", - так мне объяснял Джон Скотт, старший научный сотрудник лаборатории изучения возможностей человека, когда я посетил центрифугу компании QinetiQ в Фарнборо на юге Англии.

Из-за того, что кровь отливает от головы, у военных летчиков даже при относительно низких перегрузках случается серая пелена перед глазами. Правда, в современных пилотируемых космических аппаратах, например, в российском "Союзе", поза космонавта выбрана таким образом (с приподнятыми ногами), чтобы направить кровь от ног к груди и дальше к голове.

10 минут после старта. Тошнота

"В первую очередь космонавты жалуются на тошноту и рвоту", - говорит Фонг. Отсутствие гравитации влияет на наше внутреннее ухо, которое отвечает за чувство равновесия, координацию и ориентацию в пространстве. "А еще это [отсутствие гравитации] снижает способность отслеживать движущиеся объекты", - добавляет он.

У некоторых астронавтов кроме небольших изменений зрения были обнаружены отек зрительного нерва, изменения на сетчатке, деформация глазного яблока Уильям Джеффс,

НАСА

Даже если не обращать внимания на шарики рвоты, летающие в невесомости по капсуле, "космическая болезнь" может вызвать слабость и неспособность выполнять поставленные задачи.

Один такой случай чуть не сорвал лунную программу "Аполлон". Во время полета "Аполлон-9" (это было первое испытание лунного посадочного модуля на орбите) Расти Швайкарт поначалу был не в состоянии выполнить некоторые из поставленных задач, и продолжительность выхода в открытый космос пришлось сократить.

Ануше Ансари, ставшая первым космическим туристом среди женщин, тоже говорила, что ей пришлось столкнуться с тошнотой, рвотой и потерей ориентации.

Два дня после старта. Опухшее лицо

Недавно я брал интервью у канадского астронавта Криса Хэдфилда. По его словам, на орбите у него постоянно был заложен нос. В космосе мы будто постоянно стоим на голове; жидкость скапливается в верхней части тела. Результат - отек лица. Похоже на отек ног во время долгого авиаперелета.

Они перевозбуждены из-за пребывания в космосе, посменно работают, да еще должны привыкать ко сну в спальном мешке, пристегнутыми ремнями к стене

"Наше тело гонит жидкость вверх, - объясняет Фонг. - Когда мы оказываемся в невесомости, системы организма продолжают работать, и поскольку они не встречают сопротивления в виде гравитации, ткани головы отекают".

Но то, что вы будете выглядеть толще, чем обычно - это еще не беда. Недавние исследования также показывают, что космический полет может повлиять на зрение. Исследователи из Университета Техаса обследовали астронавтов с помощью МРТ-сканеров, и две трети из обследованных имели отклонения от нормы.

"Причины этого мы пока не выяснили, - признает представитель НАСА Уильям Джеффс. - У некоторых астронавтов кроме небольших изменений зрения были обнаружены отек зрительного нерва, изменения сетчатки, деформация глазного яблока. Возможно, из-за повышения внутричерепного давления".

Неделя после старта. Снижение массы мышц и костей

Когда отсутствует сила тяжести, наше тело начинает деградировать.

Правообладатель иллюстрации Thinkstock Image caption Прежде чем решиться сделать первый шаг на Марсе, позаботьтесь о своих костях и мышцах!

"Многим системам нашего организма для правильного функционирования нужна сила тяжести, - объясняет Фонг. - В некоторых экспериментах крысы за семь-десять дней полета теряли до трети мышечной массы – а это очень много!" Деградирует и сердечная мышца.

Когда вы находитесь на орбите, например, на Международной космической станции, это не такая уж большая проблема. Но представим себе, что вы задумали полет на Марс. Вы приземляетесь в 200 миллионах километров от дома, а ваш экипаж не может ходить…

С самого начала космической эры ученые ломали голову над тем, как помочь космонавтам поддерживать физическую форму. Каждый член экипажа МКС посвящает час в день кардиотренировке и еще час - силовым упражнениям. Несмотря на это, когда они возвращаются на Землю после полугодовой вахты на орбите, ходить им трудно.

Отсутствие силы тяжести влияет и на кости. Они растворяются - почти буквально. "На некоторых несущих участках наблюдались потери в 1-2% в месяц, - говорит Фонг. - Это очень значительные потери костной ткани и огромное количество кальция, который попадает в кровь".

Для будущих исследователей, готовых впервые ступить на поверхность Марса, это может оказаться серьезным препятствием. Обидно будет, если такой важный для человечества шаг закончится банальным переломом ноги.

Две недели после старта. Бессонница

"Бессонница - одна из наиболее распространенных проблем, - говорит Фонг. - Циркадные ритмы космонавтов, их цикл светового дня - все идет наперекосяк". На орбите, где Солнце встает каждые 90 минут, космонавтам с трудом удается приспособиться к отсутствию естественной ночи.

Кроме того, они перевозбуждены из-за пребывания в космосе, посменно работают, да еще должны привыкать ко сну в спальном мешке, пристегнутыми ремнями к стене.

Для борьбы с недосыпанием на МКС оборудованы отдельные спальные отсеки, которые можно затемнить, имитируя ночь. Испытания проходит новая система светодиодного освещения, призванная уменьшить неестественную резкость света на борту станции.

Год после старта. Болезни

Все больше свидетельств того, что космический полет оказывает вредное воздействие на иммунную систему. Исследователи НАСА обнаружили, что белые кровяные клетки дрозофил на орбите менее эффективны при поглощении чужеродных микроорганизмов и борьбе с инфекцией, чем у генетически идентичных мух, оставшихся на Земле.

В дальнем космосе, например, на пути к Луне или Марсу, возможность получить летальную дозу радиации становится все более реальной

Это исследование подтверждается другими работами. Другие насекомые, мыши и саламандры в космосе становятся более уязвимы для болезней. Вероятнее всего, дело опять в отсутствии гравитации.

Еще больше оснований для тревоги дает воздействие космической радиации. Космонавты часто сообщают, что "видят" яркие вспышки света. Причина - в космических лучах, проходящих через их мозг. И это при том, что МКС вращается по достаточно низкой орбите, и атмосфера Земли отчасти защищает обитателей станции от жесткого космического излучения. Но в дальнем космосе, например, на пути к Луне или Марсу, возможность получить летальную дозу радиации становится все более реальной. Это может сделать продолжительные полеты слишком опасными.

Впрочем, наблюдения за астронавтами программы "Аполлон", которые проводили по несколько дней в дальнем космосе на борту слабо защищенной капсулы, не выявили повышенной вероятности заболевания раком.

Два года после старта. Депрессия

Вы пережили взлет, преодолели тошноту, научились спать в космосе и делаете зарядку, чтобы по прибытии на Марс уверенно шагнуть на его поверхность. Вы в отличной физический форме. Но как вы себя чувствуете психологически?

В июне 2010 года Европейское космическое агентство и российский Институт медико-биологических проблем послали шесть человек в "полет на Марс" продолжительностью 520 дней. Имитация полета происходила на окраине Москвы в макете космического корабля. Исследовался стресс, связанный с длительным перелетом, и проблемы, вызванные изоляцией.

Как разрешить психологические проблемы людей, запертых в тесной автоматизированной консервной банке, пьющих переработанную мочу и наблюдающих за иллюминаторами бесконечное безвоздушное пространство?

Путешествие на Марс прошло прекрасно. Это было захватывающее приключение, и у экипажа была масса дел. Хорошо прошла также "прогулка по Марсу". Самой трудной оказалась финальная часть полета - возвращение на Землю. Ежедневные дела стали обременительными, члены экипажа легко раздражались. Дни тянулись медленно. В общем, участников одолела скука.

Как разрешить психологические проблемы людей, запертых в тесной автоматизированной консервной банке, пьющих переработанную мочу и наблюдающих за иллюминаторами бесконечное безвоздушное пространство? Специалисты космических агентств продолжают работать над этой задачей.

"Психологическое здоровье наших астронавтов всегда занимало нас не меньше, чем их физическое состояние, - говорит Джеффс. - Постоянные поведенческие тренинги, исследование и совершенствование технологий коммуникации - все это призвано помочь предотвратить любые потенциальные проблемы".

Для этого в первую очередь нужно набирать в экипажи правильных людей. Нервный срыв у космонавта - это худшее, что может случиться.

Долгие годы эволюции приспособили нас к жизни в условиях стабильной земной гравитации. Атмосфера дает нам защиту и обеспечивает возможность дышать. Наверное, какой-то вариант искусственной гравитации отчасти решит проблему, однако космос в любом случае представляет серьезную угрозу здоровью человека.

В следующем году НАСА планирует начать на МКС годичный эксперимент для более подробного изучения последствий длительного космического полета для астронавтов. А пока всякий, кто решится покинуть сравнительно безопасную орбиту нашей планеты и отправиться к другим мирам, должен помнить: на Земле пока нет врача, подобного культовому персонажу из "Звездного пути". Нет и технологий, которые тот использовал во время своей службы в Звездном Флоте.

Об авторе. Ричард Холлингам - журналист и ведущий подкаста "Исследователи космоса". Он редактирует журнал Space:UK для Британского космического агентства, выступает комментатором запусков для Европейского космического агентства и ведет научные программы на радио Би-би-си.

Оригинал статьи на английском языке можно прочитать на сайте .

Современные технологии и открытия выводят освоение космоса на совершенно иной уровень, однако межзвездные перелеты пока еще остаются мечтой. Но так ли она нереальна и недостижима? Что мы можем уже сейчас и чего ждать в ближайшем будущем?

C помощью телескопа «Кеплер» астрономы уже обнаружили 54 потенциально обитаемые экзопланеты. Эти далекие миры находятся в обитаемой зоне, т.е. на определенном расстоянии от центральной звезды, позволяющем поддерживать на поверхности планеты воду в жидком виде.

Однако ответ на главный вопрос, одиноки ли мы во Вселенной, получить затруднительно – из-за огромной дистанции, разделяющей Солнечную систему и наших ближайших соседей.

Например, «перспективная» планета Gliese 581g находится на расстоянии в 20 световых лет – это достаточно близко по космическим меркам, но пока слишком далеко для земных инструментов.

Обилие экзопланет в радиусе 100 и менее световых лет от Земли и огромный научный и даже цивилизационный интерес, которые они представляют для человечества, заставляют по-новому взглянуть на доселе фантастическую идею межзвездных перелетов.

Рис. 1. Ближайшие к нашей Солнечной системе звезды.

Полет к другим звездам – это, разумеется, вопрос технологий. Более того, существуют несколько возможностей для достижения столь далекой цели, и выбор в пользу того или иного способа еще не сделан.

Дорогу беспилотникам

Человечество уже отправляло в космос межзвездные аппараты: зонды Pioneer и Voyager. В настоящее время они покинули пределы Солнечной системы, однако их скорость не позволяет говорить о сколь-нибудь быстром достижении цели. Так, Voyager 1, движущийся со скоростью около 17 км/с, даже к ближайшей к нам звезде Проксима Центавра (4,2 световых года) будет лететь невероятно долгий срок – 17 тысяч лет.

Очевидно, что с современными ракетными двигателями мы никуда дальше Солнечной системы не выберемся: для транспортировки 1 кг груза даже к недалекой Проксиме Центавра нужны десятки тысяч тонн топлива. При этом с ростом массы корабля увеличивается количество необходимого топлива, и для его транспортировки нужно дополнительное горючее. Замкнутый круг, ставящий крест на баках с химическим топливом – постройка космического судна весом в миллиарды тонн представляется совершенно невероятной затеей. Простые вычисления по формуле Циолковского демонстрируют, что для ускорения космических аппаратов с ракетным двигателем на химическом топливе до скорости примерно в 10% скорости света потребуется больше горючего, чем доступно в известной вселенной.

Реакция термоядерного синтеза производит энергии на единицу массы в среднем в миллион раз больше, чем химические процессы сгорания. Именно поэтому в 1970-х годах в НАСА обратили внимание на возможность применения термоядерных ракетных двигателей. Проект беспилотного космического корабля Дедал предполагал создание двигателя, в котором небольшие гранулы термоядерного топлива будут подаваться в камеру сгорания и поджигаться пучками электронов. Продукты термоядерной реакции вылетают из сопла двигателя и придают кораблю ускорение.

Рис. 2. Космический корабль Дедал в сравнении с небоскребом Эмпайр стейт Билдинг.

Дедал должен был взять на борт 50 тыс. тонн топливных гранул диаметром 40 и 20 мм. Гранулы состоят из ядра с дейтерием и тритием и оболочки из гелия-3. Последний составляет лишь 10–15 % от массы топливной гранулы, но, собственно, и является топливом. Гелия-3 в избытке на Луне, а дейтерий широко используется в атомной промышленности.

Дейтериевое ядро служит детонатором для зажигания реакции синтеза и провоцирует мощную реакцию с выбросом реактивной плазменной струи, которая управляется мощным магнитным полем. Основная молибденовая камера сгорания двигателя Дедала должна была иметь вес более 218 тонн, камера второй ступени – 25 тонн. Магнитные сверхпроводящие катушки тоже под стать огромному реактору: первая весом 124,7 т, а вторая – 43,6 т. Для сравнения: сухая масса шаттла менее 100 т.

Полет Дедала планировался двухэтапным: двигатель первой ступени должен был проработать более 2 лет и сжечь 16 млрд топливных гранул. После отделения первой ступени почти два года работал двигатель второй ступени. Таким образом, за 3,81 года непрерывного ускорения Дедал достиг бы максимальной скорости в 12,2% скорости света.

Расстояние до звезды Барнарда (5,96 световых лет) такой корабль преодолеет за 50 лет и сможет, пролетая сквозь далекую звездную систему, передать по радиосвязи на Землю результаты своих наблюдений. Таким образом, вся миссия займет около 56 лет.

Рис. 3. Тор Стенфорда – колоссальное сооружение с целыми городами внутри обода.

Несмотря на большие сложности с обеспечением надежности многочисленных систем Дедала и его огромной стоимостью, этот проект реализуем на современном уровне технологий. Более того, в 2009 году команда энтузиастов возродила работу над проектом термоядерного корабля. В настоящее время проект Икар включает 20 научных тем по теоретической разработке систем и материалов межзвездного корабля.

Таким образом, уже сегодня возможны беспилотные межзвездные полеты на расстояние до 10 световых лет, которые займут около 100 лет полета плюс время на путешествие радиосигнала обратно на Землю. В этот радиус укладываются звездные системы Альфа Центавра, Звезда Барнарда, Сириус, Эпсилон Эридана, UV Кита, Росс 154 и 248, CN Льва, WISE 1541–2250. Как видим, рядом с Землей достаточно объектов для изучения с помощью беспилотных миссий. Но если роботы найдут что-то действительно необычное и уникальное, например, сложную биосферу? Сможет ли отправиться к далеким планетам экспедиция с участием людей?

Полет длиною в жизнь

Если беспилотный корабль мы можем начинать строить уже сегодня, то с пилотируемым дело обстоит сложнее. Прежде всего остро стоит вопрос времени полета. Возьмем ту же звезду Барнарда. К пилотируемому полету космонавтов придется готовить со школьной скамьи, поскольку даже если старт с Земли состоится в их 20-летие, то цели полета корабль достигнет к 70-летию или даже 100-летию (учитывая необходимость торможения, в котором нет нужды в беспилотном полете). Подбор экипажа в юношеском возрасте чреват психологической несовместимостью и межличностными конфликтами, а возраст в 100 лет не дает надежду на плодотворную работу на поверхности планеты и на возвращение домой.

Однако есть ли смысл возвращаться? Многочисленные исследования НАСА приводят к неутешительному выводу: длительное пребывание в невесомости необратимо разрушит здоровье космонавтов. Так, работа профессора биологии Роберта Фиттса с космонавтами МКС показывает,

что даже несмотря на активные физические упражнения на борту космического корабля, после трехлетней миссии на Марс крупные мышцы, например икроножные, станут на 50% слабее. Аналогично снижается и минеральная плотность костной ткани. В результате трудоспособность и выживаемость в экстремальных ситуациях уменьшается в разы, а период адаптации к нормальной силе тяжести составит не менее года.

Полет же в невесомости на протяжении десятков лет поставит под вопрос сами жизни космонавтов. Возможно, человеческий организм сможет восстановиться, например, в процессе торможения с постепенно нарастающей гравитацией. Однако риск гибели все равно слишком высок и требует радикального решения.

Сложной остается и проблема радиации. Даже вблизи Земли (на борту МКС) космонавты находятся не более полугода из-за опасности радиационного облучения. Межпланетный корабль придется оснастить тяжелой защитой, но и при этом остается вопрос влияния радиации на организм человека. В частности, на риск онкологических заболеваний, развитие которых в невесомости практически не изучено. В начале этого года ученый Красимир Иванов из Германского аэрокосмического центра в Кельне опубликовал результаты интересного исследования поведения клеток меланомы (самой опасной формы рака кожи) в невесомости. По сравнению с раковыми клетками, выращенными при нормальной силе тяжести, клетки, проведшие в невесомости 6 и 24 часа, менее склонны к метастазам. Это вроде бы хорошая новость, но только на первый взгляд. Дело в том, что такой «космический» рак способен находиться в состоянии покоя десятилетия, и неожиданно масштабно распространяться при нарушении работы иммунной системы. Кроме этого, исследование дает понять, что мы еще мало знаем о реакции человеческого организма на длительное пребывание в космосе. Сегодня космонавты, здоровые сильные люди, проводят там слишком мало времени, чтобы переносить их опыт на длительный межзвездный перелет.

Рис. 4. Проект Биосфера-2 начинался с красивой, тщательно подобранной и пышущей здоровьем экосистемы…

К сожалению, решить проблему невесомости на межзвездном корабле не так просто. Доступная нам возможность создания искусственной силы тяжести при помощи вращения жилого модуля имеет ряд сложностей. Чтобы создать земную гравитацию, даже колесо диаметром 200 м придется вращать со скоростью 3 оборота в минуту. При таком быстром вращении сила Кариолиса будет создавать совершенно непереносимые для вестибулярного аппарата человека нагрузки, вызывая тошноту и острые приступы морской болезни. Единственное решение этой проблемы – Тор Стенфорда, разработанный учеными Стенфордского университета в 1975 году. Это – огромное кольцо диаметром 1,8 км, в котором могли бы жить 10 тыс. космонавтов. Благодаря своим размерам оно обеспечивает силу тяжести на уровне 0.9–1,0 g и вполне комфортное проживание людей. Однако даже на скорости вращения ниже, чем один оборот в минуту, люди все равно будут испытывать легкий, но ощутимый дискомфорт. При этом если подобный гигантский жилой отсек будет построен, даже небольшие сдвиги в развесовке тора повлияют на скорость вращения и вызовут колебания всей конструкции.

Рис. 5. …а закончился экологической катастрофой.

В любом случае корабль на 10 тыс. человек – сомнительная затея.

Для создания надежной экосистемы для такого числа людей нужно огромное количество растений, 60 тыс. кур, 30 тыс. кроликов и стадо крупного рогатого скота. Только это может обеспечить диету на уровне 2400 калорий в день. Однако все эксперименты по созданию таких замкнутых экосистем неизменно заканчиваются провалом. Так, в ходе крупнейшего эксперимента «Биосфера-2» компании Space Biosphere Ventures была построена сеть герметичных зданий общей площадью 1,5 га с 3 тыс. видами растений и животных. Вся экосистема должна была стать самоподдерживающейся маленькой «планетой», в которой жили 8 человек.

Эксперимент длился 2 года, но уже после нескольких недель начались серьезные проблемы: микроорганизмы и насекомые стали неконтролируемо размножаться, потребляя кислород и растения в слишком больших количествах, также оказалось, что без ветра растения стали слишком хрупкими.

В результате локальной экологической катастрофы люди начали терять вес, количество кислорода снизилось с 21% до 15%, и ученым пришлось нарушить условия эксперимента и поставлять восьмерым «космонавтам» кислород и продукты.

Таким образом, создание сложных экосистем представляется ошибочным и опасным путем обеспечения экипажа межзвездного корабля кислородом и питанием. Для решения этой проблемы понадобятся специально сконструированные организмы с измененными генами, способные питаться светом, отходами и простыми веществами. Например, большие современные цеха по производству пищевой водоросли хлореллы могут производить до 40 т суспензии в сутки. Один полностью автономный биореактор весом несколько тонн может производить до 300 л суспензии хлореллы в сутки, чего достаточно для питания экипажа в несколько десятков человек. Генетически модифицированная хлорелла могла бы не только удовлетворять потребности экипажа в питательных веществах, но и перерабатывать отходы, включая углекислый газ. Сегодня процесс генетического инжиниринга микроводорослей стал обычным делом, и существуют многочисленные образцы, разработанные для очистки сточных вод, выработки биотоплива и т.д.

Замороженный сон

Практически все вышеперечисленные проблемы пилотируемого межзвездного полета могла бы решить одна очень перспективная технология – анабиоз или как его еще называют криостазис. Анабиоз – это замедление процессов жизнедеятельности человека как минимум в несколько раз. Если удастся погрузить человека в такую искусственную летаргию, замедляющую обмен веществ в 10 раз, то за 100-летний полет он постареет во сне всего на 10 лет. При этом облегчается решение проблем питания, снабжения кислородом, психических расстройств, разрушения организма в результате воздействия невесомости. Кроме того, защитить отсек с анабиозными камерами от микрометеоритов и радиации проще, чем обитаемую зону большого объема.

К сожалению, замедление процессов жизнедеятельности человека – это чрезвычайно сложная задача. Но в природе существуют организмы, способные впадать в спячку и увеличивать продолжительность своей жизни в сотни раз. Например, небольшая ящерица под названием сибирский углозуб способна впадать в спячку в тяжелые времена и десятилетиями оставаться в живых, даже будучи вмороженной в глыбу льда с температурой минус 35–40°С. Известны случаи, когда углозубы проводили в спячке около 100 лет и, как ни в чем не бывало, оттаивали и убегали от удивленных исследователей. При этом обычная «непрерывная» продолжительность жизни ящерицы не превышает 13 лет. Удивительная способность углозуба объясняется тем, что его печень синтезирует большое количество глицерина, почти 40 % от веса тела, что защищает клетки от низких температур.

Рис. 6. Биореактор для выращивания генетически модифицированных микроводорослей и других микроорганизмов может решить проблему питания и переработки отходов.

Главное препятствие для погружения человека в криостазис – вода, из которой на 70% состоит наше тело.

При замерзании она превращается в кристаллики льда, увеличиваясь в объеме на 10%, из-за чего разрывается клеточная мембрана. Кроме того, по мере замерзания растворенные внутри клетки вещества мигрируют в оставшуюся воду, нарушая внутриклеточные ионообменные процессы, а также организацию белков и других межклеточных структур . В общем, разрушение клеток во время замерзания делают невозможным возвращение человека к жизни.

Однако существует перспективный путь решения этой проблемы – клатратные гидраты . Они были обнаружены в далеком 1810 году, когда британский ученый сэр Хэмфри Дэви подал в воду хлор под высоким давлением и стал свидетелем образования твердых структур. Это и были клатратные гидраты – одна из форм водяного льда, в который включен посторонний газ. В отличие от кристаллов льда, клатратные решетки менее твердые, не имеют острых граней, зато имеют полости, в которые могут «спрятаться» внутриклеточные вещества. Технология клатратного анабиоза была бы проста: инертный газ, например, ксенон или аргон, температура чуть ниже нуля, и клеточный метаболизм начинает постепенно замедляться, пока человек не впадает в криостазис. К сожалению, для образования клатратных гидратов требуется высокое давление (около 8 атмосфер) и весьма высокая концентрация газа, растворенного в воде. Как создать такие условия в живом организме, пока неизвестно, хотя некоторые успехи в этой области есть. Так, клатраты способны защитить ткани сердечной мышцы от разрушения митохондрий даже при криогенных температурах (ниже 100 градусов Цельсия), а также предотвратить повреждение клеточных мембран. Об экспериментах по клатратному анабиозу на людях речь пока не идет, поскольку коммерческий спрос на технологии криостазиса невелик и исследования на эту тему проводятся в основном небольшими компаниями, предлагающими услуги по заморозке тел умерших.

Полет на водороде

В 1960 году физик Роберт Бассард предложил оригинальную концепцию прямоточного термоядерного двигателя, который решает многие проблемы межзвездного перелета. Суть заключается в использовании водорода и межзвездной пыли, присутствующих в космическом пространстве. Космический корабль с таким двигателем сначала разгоняется на собственном горючем, а затем разворачивает огромную, диаметром тысячи километров воронку магнитного поля, которое захватывает водород из космического пространства. Этот водород используется в качестве неисчерпаемого источника топлива для термоядерного ракетного двигателя.

Применение двигателя Бассарда сулит огромные преимущества. Прежде всего за счет «дармового» топлива есть возможность двигаться с постоянным ускорением в 1 g, а значит – отпадают все проблемы, связанные с невесомостью. Кроме того двигатель позволяет разогнаться до огромной скорости – в 50% от скорости света и даже больше. Теоретически, двигаясь с ускорением в 1 g, расстояние в 10 световых лет корабль с двигателем Бассарда может преодолеть примерно за 12 земных лет, причем для экипажа из-за релятивистских эффектов прошло бы всего 5 лет корабельного времени.

К сожалению, на пути создания корабля с двигателем Бассарда стоит ряд серьезных проблем, которые нельзя решить на современном уровне технологий. Прежде всего необходимо создать гигантскую и надежную ловушку для водорода, генерирующую магнитные поля гигантской силы. При этом она должна обеспечивать минимальные потери и эффективную транспортировку водорода в термоядерный реактор. Сам процесс термоядерной реакции превращения четырех атомов водорода в атом гелия, предложенный Бассардом, вызывает немало вопросов. Дело в том, что эта простейшая реакция трудноосуществима в прямоточном реакторе, поскольку она слишком медленно идет и, в принципе, возможна только внутри звезд.

Однако прогресс в изучении термоядерного синтеза позволяет надеяться, что проблема может быть решена, например, использованием «экзотических» изотопов и антиматерии в качестве катализатора реакции.

Рис. 7. Сибирский углозуб может впадать в анабиоз на десятилетия.

Пока изыскания на тему двигателя Бассарда лежат исключительно в теоретической плоскости. Необходимы расчеты, базирующиеся на реальных технологиях. Прежде всего, нужно разработать двигатель, способный произвести энергию, достаточную для питания магнитной ловушки и поддержания термоядерной реакции, производства антиматерии и преодоления сопротивления межзвездной среды, которая будет тормозить огромный электромагнитный «парус».

Антиматерия в помощь

Возможно, это звучит странно, но сегодня человечество ближе к созданию двигателя, работающего на антиматерии, чем к интуитивно понятному и простому на первый взгляд прямоточному двигателю Бассарда.

Термоядерный реактор на дейтерии и тритии может генерировать 6х10 11 Дж на 1 г водорода – выглядит внушительно, особенно если учесть, что это в 10 миллионов раз более эффективно, чем химические ракеты. Реакция материи и антиматерии производит приблизительно на два порядка больше энергии. Когда речь идет об аннигиляции, расчеты ученого Марка Миллиса и плод его 27-летнего труда не выглядят такими уж удручающими: Миллис рассчитал затраты энергии на запуск космического корабля к Альфе Центавра и выяснил, что они составят 10 18 Дж, т.е. практически годовое потребление электричества всем человечеством.

Но это всего один килограмм антивещества.

Рис. 8. Зонд разработки Hbar Technologies будет иметь тонкий парус из углеродного волокна, покрытого ураном 238. Врезаясь в парус, антиводород будет аннигилировать и создавать реактивную тягу.

В результате аннигиляции водорода и антиводорода образуется мощный поток фотонов, скорость истечения которого достигает максимума для ракетного двигателя, т.е. скорости света. Это идеальный показатель, который позволяет добиться очень высоких околосветовых скоростей полета космического корабля с фотонным двигателем. К сожалению, применить антиматерию в качестве ракетного топлива очень непросто, поскольку во время аннигиляции происходят вспышки мощнейшего гамма-излучения, которое убьет космонавтов. Также пока не существует технологий хранения большого количества антивещества, да и сам факт накопления тонн антиматерии, даже в космосе далеко от Земли, является серьезной угрозой, поскольку аннигиляция даже одного килограмма антиматерии эквивалентна ядерному взрыву мощностью 43 мегатонны (взрыв такой силы способен превратить в пустыню треть территории США). Стоимость антивещества является еще одним фактором, осложняющим межзвездный полет на фотонной тяге. Современные технологии производства антивещества позволяют изготовить один грамм антиводорода по цене в десяток триллионов долларов.

Однако большие проекты по исследованию антиматерии приносят свои плоды. В настоящее время созданы специальные хранилища позитронов, «магнитные бутылки», представляющие собой охлажденные жидким гелием емкости со стенками из магнитных полей. В июне этого года ученым ЦЕРНа удалось сохранить атомы антиводорода в течение 2000 секунд. В Университете Калифорнии (США) строится крупнейшее в мире хранилище антивещества, в котором можно будет накапливать более триллиона позитронов. Одной из целей ученых Калифорнийского университета является создание переносных емкостей для антивещества, которые можно использовать в научных целях вдали от больших ускорителей. Этот проект пользуется поддержкой Пентагона, который заинтересован в военном применении антиматерии, так что крупнейший в мире массив магнитных бутылок вряд ли будет ощущать недостаток финансирования.

Современные ускорители смогут произвести один грамм антиводорода за несколько сотен лет. Это очень долго, поэтому единственный выход: разработать новую технологию производства антиматерии или объединить усилия всех стран нашей планеты. Но даже в этом случае при современных технологиях нечего и мечтать о производстве десятков тонн антиматерии для межзвездного пилотируемого полета.

Однако все не так уж печально. Специалисты НАСА разработали несколько проектов космических аппаратов, которые могли бы отправиться в глубокий космос, имея всего один микрограмм антивещества. В НАСА полагают, что совершенствование оборудования позволит производить антипротоны по цене примерно 5 млрд долл. за 1 грамм.

Американская компания Hbar Technologies при поддержке НАСА разрабатывает концепцию беспилотных зондов, приводимых в движение двигателем, работающем на антиводороде. Первой целью этого проекта является создание беспилотного космического аппарата, который смог бы менее чем за 10 лет долететь к поясу Койпера на окраине Солнечной системы. Сегодня долететь в такие удаленные точки за 5–7 лет невозможно, в частности, зонд НАСА New Horizons пролетит сквозь пояс Койпера через 15 лет после запуска.

Зонд, преодолевающий расстояние в 250 а.е. за 10 лет, будет очень маленьким, с полезной нагрузкой всего 10 мг, но ему и антиводорода потребуется немного – 30 мг. Теватрон выработает такое количество за несколько десятилетий, и ученые смогли бы протестировать концепцию нового двигателя в ходе реальной космической миссии.

Предварительные расчеты также показывают, что подобным образом можно отправить небольшой зонд к Альфе Центавра. На одном грамме антиводорода он долетит к далекой звезде за 40 лет.

Может показаться, что все вышеописанное – фантастика и не имеет отношения к ближайшему будущему. К счастью, это не так. Пока внимание общественности приковано к мировым кризисам, провалам поп-звезд и прочим актуальным событиям, остаются в тени эпохальные инициативы. Космическое агентство НАСА запустило грандиозный проект 100 Year Starship, который предполагает поэтапное и многолетнее создание научного и технологического фундамента для межпланетных и межзвездных полетов. Эта программа не имеет аналогов в истории человечества и должна привлечь ученых, инженеров и энтузиастов других профессий со всего мира. С 30 сентября по 2 октября 2011 года в Орландо (штат Флорида) состоится симпозиум, на котором будут обсуждаться различные технологии космических полетов. На основании результатов таких мероприятий специалисты НАСА будут разрабатывать бизнес-план по оказанию помощи определенным отраслям и компаниям, которые разрабатывают пока отсутствующие, но необходимые для будущего межзвездного перелета технологии. Если амбициозная программа НАСА увенчается успехом, уже через 100 лет человечество будет способно построить межзвездный корабль, а по Солнечной системе мы будем перемещаться с такой же легкостью, как сегодня перелетаем с материка на материк.

Ответ потребует большой статьи, хотя на него можно ответить и единственным символом: c .

Скорость света в вакууме, c , равна примерно тремстам тысячам километров в секунду и превысить ее невозможно. Следовательно, нельзя и добраться до звезд быстрее, чем за несколько лет (свет идет 4,243 года до Проксимы Центавра, так что космический корабль не сможет прибыть еще быстрее). Если добавить время на разгон и торможение с более-менее приемлемым для человека ускорением, то получится около десяти лет до ближайшей звезды.

В каких условиях лететь?

И этот срок уже существенное препятствие сам по себе, даже если отвлечься от вопроса «как разогнаться до скорости, близкой к скорости света». Сейчас не существует космических кораблей, которые позволяли экипажу автономно жить в космосе столько времени - космонавтам постоянно привозят свежие припасы с Земли. Обычно разговор о проблемах межзвездных перелетов начинают с более фундаментальных вопросов, но мы начнем с сугубо прикладных проблем.

Даже спустя полвека после полета Гагарина инженеры не смогли создать для космических кораблей стиральную машину и достаточно практичный душ, а рассчитанные на условия невесомости туалеты ломаются на МКС с завидной регулярностью . Перелет хотя бы к Марсу (22 световые минуты вместо 4 световых лет) уже ставит перед конструкторами сантехники нетривиальную задачу: так что для путешествия к звездам потребуется как минимум изобрести космический унитаз с двадцатилетней гарантией и такую же стиральную машину.

Воду для стирки, мытья и питья тоже придется либо брать с собой, либо использовать повторно. Равно как и воздух, да и еду тоже необходимо либо запасать, либо выращивать на борту. Эксперименты по созданию замкнутой экосистемы на Земле уже проводились, однако их условия все же сильно отличались от космических хотя бы наличием гравитации. Человечество умеет превращать содержимое ночного горшка в чистую питьевую воду, но в данном случае требуется суметь сделать это в невесомости, с абсолютной надежностью и без грузовика расходных материалов: брать к звездам грузовик катриджей для фильтров слишком накладно.

Стирка носков и защита от кишечных инфекций могут показаться слишком банальными, «нефизическими» ограничениями на межзвездные полеты - однако любой опытный путешественник подтвердит, что «мелочи» вроде неудобной обуви или расстройства желудка от незнакомой пищи в автономной экспедиции могут обернуться угрозой для жизни.

Решение даже элементарных бытовых проблем требует столь же серьезной технологической базы, как и разработка принципиально новых космических двигателей. Если на Земле изношенную прокладку в бачке унитаза можно купить в ближайшем магазине за два рубля, то уже на марсианском корабле нужно предусмотреть либо запас всех подобных деталей, либо трехмерный принтер для производства запчастей из универсального пластикового сырья.

В ВМС США в 2013 году всерьез занялись трехмерной печатью после того, как оценили затраты времени и средств на ремонт боевой техники традиционными методами в полевых условиях. Военные рассудили, что напечатать какую-нибудь редкую прокладку для снятого с производства десять лет назад узла вертолета проще, чем заказать деталь со склада на другом материке.

Один из ближайших соратников Королева, Борис Черток, писал в своих мемуарах «Ракеты и люди» о том, что в определенный момент советская космическая программа столкнулась с нехваткой штепсельных контактов. Надежные соединители для многожильных кабелей пришлось разрабатывать отдельно.

Кроме запчастей для техники, еды, воды и воздуха космонавтам потребуется энергия. Энергия будет нужна двигателю и бортовому оборудованию, так что отдельно придется решить проблему с мощным и надежным ее источником. Солнечные батареи не годятся хотя бы по причине удаленности от светил в полете, радиоизотопные генераторы (они питают «Вояджеры» и «Новые горизонты») не дают требуемой для большого пилотируемого корабля мощности, а полноценные ядерные реакторы для космоса до сих пор делать не научились.

Советская программа по созданию спутников с ядерной энергоустановкой была омрачена международным скандалом после падения аппарата «Космос-954» в Канаде, а также рядом отказов с менее драматичными последствиями; аналогичные работы в США свернули еще раньше. Сейчас созданием космической ядерной энергоустановки намерены заняться в Росатоме и Роскосмосе, но это все-таки установки для ближних перелетов, а не многолетнего пути к другой звездной системе.

Возможно, вместо ядерного реактора в будущих межзвездных кораблях найдут применение токамаки. О том, насколько сложно хотя бы правильно определить параметры термоядерной плазмы, в МФТИ этим летом прочитали целую лекцию для всех желающих . Кстати, проект ITER на Земле успешно продвигается: даже те, кто поступил на первый курс, сегодня имеют все шансы приобщиться к работе над первым экспериментальным термоядерным реактором с положительным энергетическим балансом.

На чем лететь?

Для разгона и торможения межзвездного корабля обычные ракетные двигатели не годятся. Знакомые с курсом механики, который читают в МФТИ в первом семестре, могут самостоятельно рассчитать то, сколько топлива потребуется ракете для набора хотя бы ста тысяч километров в секунду. Для тех, кто еще не знаком с уравнением Циолковского, сразу озвучим результат - масса топливных баков получается существенно выше массы Солнечной системы.

Уменьшить запас топлива можно за счет повышения скорости, с которой двигатель выбрасывает рабочее тело, газ, плазму или что-то еще, вплоть до пучка элементарных частиц. В настоящее время для перелетов автоматических межпланетных станций в пределах Солнечной системы или для коррекции орбиты геостационарных спутников активно используют плазменные и ионные двигатели, но у них есть ряд других недостатков. В частности, все такие двигатели дают слишком малую тягу, ими пока нельзя придать кораблю ускорение в несколько метров на секунду в квадрате.

Проректор МФТИ Олег Горшков - один из признанных экспертов в области плазменных двигателей. Двигатели серии СПД - производят в ОКБ «Факел», это серийные изделия для коррекции орбиты спутников связи.

В 1950-е годы разрабатывался проект двигателя, который бы использовал импульс ядерного взрыва (проект Orion), но и он далек от того, чтобы стать готовым решением для межзвездных полетов. Еще менее проработан проект двигателя, который использует магнитогидродинамический эффект, то есть разгоняется за счет взаимодействия с межзвездной плазмой. Теоретически, космический корабль мог бы «засасывать» плазму внутрь и выбрасывать ее назад с созданием реактивной тяги, но тут возникает еще одна проблема.

Как выжить?

Межзвездная плазма - это прежде всего протоны и ядра гелия, если рассматривать тяжелые частицы. При движении с скоростями порядка сотни тысяч километров в секунду все эти частицы приобретают энергию в мегаэлектронвольты или даже десятки мегаэлектронвольт - столько же, сколько имеют продукты ядерных реакций. Плотность межзвездной среды составляет порядка ста тысяч ионов на кубический метр, а это значит, что за секунду квадратный метр обшивки корабля получит порядка 10 13 протонов с энергиями в десятки МэВ.

Один электронвольт, эВ , это та энергия, которую приобретает электрон при пролете от одного электрода до другого с разностью потенциалов в один вольт. Такую энергию имеют кванты света, а кванты ультрафиолета с большей энергией уже способны повредить молекулы ДНК. Излучение или частицы с энергиями в мегаэлектронвольты сопровождает ядерные реакции и, кроме того, само способно их вызывать.

Подобное облучение соответствует поглощенной энергии (в предположении, что вся энергия поглощается обшивкой) в десятки джоулей. Причем эта энергия придет не просто в виде тепла, а может частично уйти на инициацию в материале корабля ядерных реакций с образованием короткоживущих изотопов: проще говоря, обшивка станет радиоактивной.

Часть налетающих протонов и ядер гелия можно отклонять в сторону магнитным полем, от наведенной радиации и вторичного излучения можно защищаться сложной оболочкой из многих слоев, однако эти проблемы тоже пока не имеют решения. Кроме того, принципиальные сложности вида «какой материал в наименьшей степени будет разрушаться при облучении» на стадии обслуживания корабля в полете перейдут в частные проблемы - «как открутить четыре болта на 25 в отсеке с фоном в пятьдесят миллизиверт в час».

Напомним, что при последнем ремонте телескопа «Хаббл» у астронавтов поначалу не получилось открутить четыре болта, которые крепили одну из фотокамер. Посовещавшись с Землей, они заменили ключ с ограничением крутящего момента на обычный и приложили грубую физическую силу. Болты стронулись с места, камеру успешно заменили. Если бы прикипевший болт при этом сорвали, вторая экспедиция обошлась бы в полмиллиарда долларов США. Или вовсе бы не состоялась.

Нет ли обходных путей?

В научной фантастике (часто более фантастической, чем научной) межзвездные перелеты совершаются через «подпространственные туннели». Формально, уравнения Эйнштейна, описывающие геометрию пространства-времени в зависимости от распределенного в этом пространстве-времени массы и энергии, действительно допускают нечто подобное - вот только предполагаемые затраты энергии удручают еще больше, чем оценки количества ракетного топлива для полета к Проксиме Центавра. Мало того, что энергии нужно очень много, так еще и плотность энергии должна быть отрицательной.

Вопрос о том, нельзя ли создать стабильную, большую и энергетически возможную «кротовую нору» - привязан к фундаментальным вопросам об устройстве Вселенной в целом. Одной из нерешенных физических проблем является отсутствие гравитации в так называемой Стандартной модели - теории, описывающей поведение элементарных частиц и три из четырех фундаментальных физических взаимодействий. Абсолютное большинство физиков довольно скептически относится к тому, что в квантовой теории гравитации найдется место для межзвездных «прыжков через гиперпространство», но, строго говоря, попробовать поискать обходной путь для полетов к звездам никто не запрещает.

Дайте космонавту и герою Космонавта и Героя April 5th, 2016

Александр Мисуркин - уникальный космонавт. Он провел 167 суток на орбите, из них 20 часов в открытом космосе, и в числе экипажа "Союза" впервые пролетел по "короткой схеме" от Байконура до МКС за 6 часов. Но его уникальность не в этом, а в том, что даже спустя два года после полета он не имеет звания "летчик-космонавт". Он летчик - налет более тысячи часов. Он космонавт. Но не летчик-космонавт. И не Герой, хотя после первого полета сейчас все космонавты получают Золотую Звезду. Про него просто... забыли.

О почти детективной истории того как Звезда обошла героя рассказано на сайте "Новостей космонавтики". Ситуация складывается странная: вроде бы все заинтересованные участники присуждения награды в курсе о ситуации, и никто не против. Александр не бил морды командиру взвода Звездного десанта, не дебоширил на ночных улицах Звездного городка, и не купался в фонтанах на День космонавтики. Однако, все представления к награде неотвратимо терялись в недрах многоступенчатой бюрократической машины. Поначалу какие-то объективные причины для проволочек были: по данным ГИБДД их экипаж на орбите превысил первую космическую и был оштрафован.

Примерно через полгода, то есть весной 2014 г., кадровики ЦПК и РКК «Энергия» наконец подготовили единое представление экипажа к наградам: Сашу Мисуркина - к званию Героя Российской Федерации, Павла Виноградова - к ордену «За заслуги перед Отечеством» III степени - и согласно принятому порядку отправили на согласование в администрацию Московской области.

К концу лета это представление вернулось в отдел кадров «Энергии» по той причине, что у П. В. Виноградова обнаружился неоплаченный штраф за превышение скорости в июне 2013г. (Павел в это время был в космосе и летел со скоростью почти 8км/с. Неужели ГИБДД стало размещать радары на орбите?) Дело затягивалось. Чтобы не задерживать награждение Мисуркина, кадровики по просьбе Павла Владимировича сделали отдельные представления на каждого из них, и документы Мисуркина снова были отосланы в администрацию области. Виноградову же, чтобы сдвинуть дело с мертвой точки, пришлось оплатить штраф и написать «оправдательное» письмо на имя губернатора области А. Ю. Воробьёва с обещанием исправиться и никогда больше «не нарушать».

Но впоследствии никаких вразумительных объяснений наградного игнора не поступало. Скорее всего ситуацию усугубила реформа Роскосмоса : создание ОРКК, перерождение Федерального космического агентства в госкорпорацию. И сейчас, нужная бумага лежит на чьем-нибудь столе под грудой новых документов или прежний владелец кабинета не успел подписать, а прошедший ему на смену чиновник не стал разбираться в старых бумагах. В общем, всякое бывает. И в текущей ситуации мы можем либо негодовать от равнодушия бюрократии, либо что-то предпринять.

Я предлагаю подписать онлайн-письмо новому главе Роскосмоса . Не знаю будет ли какой эффект, иногда петиции работают, иногда нет. Мы можем по крайней мере попытаться, заодно выразив свое уважение космонавту, не дожидаясь официальных церемоний.

В наше время космическими полетами уже никого не удивишь. В СМИ регулярно сообщают о новых запусках, а услуги, предоставляемые космическими аппаратами – например, спутниковое телевидение или GPS-навигация – широко используются «в быту». Но, пожалуй, назвать все эти успехи человечества «освоением космоса» было бы чересчур громко. Пока что мы осваиваем главным образом околоземное пространство. Так, большая часть спутников находятся на геостационарной орбите – ее высота (35 786 км) превосходит диаметр Земли менее чем втрое. А «ближний космос» находится всего в нескольких сотнях километров от планеты: например, высота полета Международной космической станции – менее 400 км. Не слишком-то много в масштабах Вселенной…

Конечно, созданные человеком аппараты уже побывали и на Луне, и на других планетах Солнечной системы, а станции «Пионер» и «Вояджер» даже вышли за ее пределы. Но если они и сумеют достичь ближайших звезд, мы об этом вряд ли узнаем. Ведь такой полет займет приблизительно 2 миллиона лет, а связь с аппаратами прервется куда раньше. Очевидно, что межзвездные перелеты требуют новых принципов движения в космосе – традиционные ракетные двигатели для этой цели не очень-то годятся. Между тем, в соседних звездных системах человек мог бы найти немало интересного для себя. Сейчас открыто уже более 1000 экзопланет, и не исключено, что некоторые из них пригодны для жизни. Всё чаще в рядах ученых слышатся призывы обезопасить человечество от космических катастроф. По их словам, рано или поздно условия жизни на Земле могут стать непригодными для жизни, и только экспансия в космос поможет спасти наш вид. Весь вопрос в том, как ее осуществить.

По оценкам космологов, размер видимой Вселенной составляет примерно 93 млрд. световых лет, и она, как известно, продолжает расширяться. На этом фоне не только Солнечная Система, но и весь Млечный Путь (около 100 тысяч световых лет в поперечнике) выглядит крошечной песчинкой. Ситуация осложняется тем, что скорость перемещения материальных объектов, согласно специальной теории относительности (СТО), не может превышать скорость света (около 300 тысяч км/c). А ведь даже у него уходят многие тысячелетия на то, чтобы пересечь одну-единственную галактику.

В принципе, создать реактивный двигатель, способный придать аппарату околосветовую скорость, возможно даже при современном уровне технологий. Именно такой двигатель предлагают авторы проектов «Daedalus» и «Ikarus» – пожалуй, самых проработанных на сегодня планов межзвездного перелета. Но использовать их для колонизации иных миров вряд ли удастся: запасов топлива не хватит даже на торможение в конечной точке, так что полет будет, что называется, «в один конец».

Пока что путешествовать по Вселенной удается только персонажам научно-фантастических романов, в распоряжении которых есть сверхсветовые космические корабли, телепорты и прочие достижения физики будущего. Так не пора ли и нам заняться их разработкой? В далеком уже 2006 году в НАСА стартовала программа Breakthrough Propulsion Physics (BPP), призванная разработать принципиально новые двигатели для межзвездных путешествий. Несмотря на то, что один из двигателей носит имя известного ученого и популяризатора науки Стивена Хокинга, всемирно известный физик в ней не участвовал: он делает ставку на более простые аннигиляционные двигатели.

Идеи же участников BPP были куда более дерзкими. Настолько дерзкими, что многие из них возможны разве что математически: задействованные в них физические принципы, науке пока не известны. Другие, хотя и не нарушают известных законов природы, потребовали бы колоссальных затрат энергии или разработки материалов с необычными свойствами. Большая часть предложенных двигателей основано на «играх» с гравитацией. Согласно современным представлениям, гравитация есть не что иное, как кривизна пространства-времени. Нетрудно догадаться, что антигравитация должна искривлять пространство в противоположную сторону. Разместив антигравитационное вещество в корме корабля, можно было бы придать ему постоянное ускорение без всяких затрат энергии. Единственная трудность связана с тем, что частиц с отрицательной массой пока не обнаружено, и неизвестно, существуют ли они вообще.

Впрочем, вечное движение можно получить и с помощью обычной гравитации. Для этого нужно каким-то образом разделить массу на источник гравитационного поля и взаимодействующую с ним часть, а затем закрепить их неподвижно друг относительно друга. Осталось придумать, как это сделать: с тем же успехом можно было бы, например, предложить отделить электрическое поле от заряда, который его создает. Еще один способ передвижения в космосе основан на локальном изменении законов природы. Исаак Ньютон – автор первой математической теории гравитации – установил, что сила притяжения зависит от массы взаимодействующих тел и расстояния между ними. В уравнении также присутствует константа – гравитационная постоянная (G). Если каким-то образом увеличить эту постоянную в передней части космического корабля и уменьшить на его корме, возникнет эффект, по сути аналогичный антигравитации. Но величина G не зря называется постоянной: считается, что ее значение одинаково во всей Вселенной.

Впрочем, существуют и альтернативные космологические концепции, в которых гравитационная постоянная – переменная величина. Так или иначе, пока непонятно, как изменить ее искусственным путем. Двигатель Алкуберрье – пожалуй, наиболее привлекательный из предложенных проектов. В нем предлагается создать нечтовроде пространственного пузыря, который окружил бы корабль за счет сжатия пространства-времени перед его носом и расширения за кормой. Такой «пузырь» мог бы даже превысить скорость света, не нарушая СТО – ведь ограничения в скорости касаются только частиц материи, а не самого пространства. Но, к сожалению, для этого опять-таки потребуется отрицательная масса, которая пока что существует только в теории. В других проектах предлагается осваивать звездные просторы при помощи парусного флота. Когда-то морские корабли отказались от парусов в пользу двигателей: не исключено, что их космические «собратья» когда-нибудь проделают обратный путь. И это не фантастика. Солнечные паруса разгоняют аппараты за счет давления, создаваемого потоком ионизированных частиц или фотонов. Величина этого давления очень мала, поэтому паруса должны иметь весьма внушительную площадь. Сейчас они активно разрабатываются в разных странах, в том числе в России. Исследователи, работавшие в рамках BPP, имеют в своем запасе куда более оригинальные и эффективные решения. Так, они предложили создать что-то вроде солнечного диода. Такой парус должен пропускать свет только в одном направлении и отражать его в другом. Как вариант, одна сторона паруса могла бы отражать фотоны, а другая – поглощать их. Разница в давлении света создавала бы тягу даже при отсутствии в условиях «космического штиля» – при отсутствии попутного потока фотонов. «Парус Казимира» позволяет и вовсе не зависеть от излучения звезд. Эффект, предсказанный Хендриком Казимиром в 1948г., связан с флуктуациями вакуума, в ходе которых образуются короткоживущие частицы. Эти частицы носят название «виртуальных», но при этом они оказывают вполне реальное, хотя и очень слабое давление. Если каким-то образом усилить его на одной стороне паруса, корабль приобрел бы постоянное ускорение без всяких затрат топлива. О том, как именно это сделать, изобретатели умалчивают.

Программа BPP проработала 6 лет, после чего была прекращена. Спору нет: предложенные идеи весьма занимательны, но оправдывают ли они те 1,2 миллиона долларов, вложенные в разработку? Из-за значительных затрат при полном отсутствии практических результатов некоторые СМИ даже назвали программу «крупнейшей научной аферой века». Впрочем, едва ли это справедливо: ведь прорывные результаты невозможны без долгой теоретической подготовки. В конце концов, первые планы полета на Луну тоже имели мало общего с реальностью… Останутся ли разработки специалистов НАСА курьезом науки или же станут первым шагом к межзвездным путешествиям – покажет время.

Иллюстрация: depositphotos.com

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter .

Последние материалы раздела:

Практические и графические работы по черчению б) Простые разрезы
Практические и графические работы по черчению б) Простые разрезы

Рис. 99. Задания к графической работе № 4 3) Есть ли отверстия в детали? Если есть, какую геометрическую форму отверстие имеет? 4) Найдите на...

Третичное образование Третичное образование
Третичное образование Третичное образование

Чешская система образования развивалась на протяжении длительного периода. Обязательное образование было введено с 1774 года. На сегодняшний день в...

Презентация земля, ее развитие как планеты Презентация на тему возникновения земли
Презентация земля, ее развитие как планеты Презентация на тему возникновения земли

Слайд 2 В одной галактике насчитывается около 100 миллиардов звезд, а всего в нашей Вселенной, предполагают учёные, существует 100 млрд...