Анализ математический. Общая характеристика математических методов анализа

В полной мере новое исчисление как систему создал Ньютон , который, однако, долгое время не публиковал свои открытия .

Официальной датой рождения дифференциального исчисления можно считать май , когда Лейбниц опубликовал первую статью «Новый метод максимумов и минимумов…» . Эта статья в сжатой и малодоступной форме излагала принципы нового метода, названного дифференциальным исчислением.

Лейбниц и его ученики

Эти определения поясняются геометрически, при этом на рис. бесконечно малые приращения изображены конечными. Рассмотрение опирается на два требования (аксиомы). Первое:

Требуется, чтобы две величины, отличающиеся друг от друга лишь на бесконечно малую величину, можно было брать [при упрощении выражений?] безразлично одну вместо другой.

Продолжение каждой такой линии называется касательной к кривой. Исследуя касательную, проходящую через точку , Лопиталь придаёт большое значение величине

,

достигающее экстремальных значений в точках перегиба кривой, отношению же к не придаётся никакого особого значения.

Примечательно нахождение точек экстремума . Если при непрерывном увеличении диаметра ордината сначала возрастает, а затем убывает, то дифференциал сначала положителен по сравнению с , а потом отрицателен.

Но всякая непрерывно возрастающая или убывающая величина не может превратиться из положительной в отрицательную, не проходя через бесконечность или нуль… Отсюда следует, что дифференциал наибольшей и наименьшей величины должен равняться нулю или бесконечности.

Вероятно, эта формулировка не безупречна, если вспомнить о первом требовании: пусть, скажем, , тогда в силу первого требования

;

в нуле правая часть равна нулю, а левая нет. Видимо следовало сказать, что можно преобразовать в соответствии с первым требованием так, чтобы в точке максимума . . В примерах все само собой понятно, и лишь в теории точек перегиба Лопиталь пишет, что равен нулю в точке максимума, будучи разделён на .

Далее, при помощи одних дифференциалов формулируются условия экстремума и рассмотрено большое число сложных задач, относящихся в основном к дифференциальной геометрии на плоскости. В конце книги, в гл. 10, изложено то, что теперь называют правилом Лопиталя , хотя и в не совсем обычной форме. Пусть величина ординаты кривой выражена дробью, числитель и знаменатель которой обращаются в нуль при . Тогда точка кривой с имеет ординату , равную отношению дифференциала числителя к дифференциалу знаменателя, взятому при .

По замыслу Лопиталя написанное им составляло первую часть Анализа, вторая же должна была содержать интегральное исчисление, то есть способ отыскания связи переменных по известной связи их дифференциалов. Первое его изложение дано Иоганном Бернулли в его Математических лекциях о методе интеграла . Здесь дан способ взятия большинства элементарных интегралов и указаны методы решения многих дифференциальных уравнений первого порядка.

Указывая на практическую полезность и простоту нового метода Лейбниц писал:

То, что человек, сведущий в этом исчислении, может получить прямо в трёх строках, другие учёнейшие мужи принуждены были искать, следуя сложными обходными путями.

Эйлер

Перемены, произошедшие за последующие полвека, отражены в обширном трактате Эйлера . Изложение анализа открывает двухтомное «Введение», где собраны изыскания о различных представлениях элементарных функций. Термин «функция» впервые появляется лишь в у Лейбница , однако на первые роли его выдвинул именно Эйлер. Изначальная трактовка понятия функции состояла в том, что функция - это выражение для счёта (нем. Rechnungsausdrϋck ) или аналитическое выражение .

Функция переменного количества есть аналитическое выражение, составленное каким-либо образом из этой переменного количества и чисел или постоянных количеств.

Подчёркивая, что «основное различие функций лежит в способе составления их из переменного и постоянных», Эйлер перечисляет действия, «посредством которых количества могут друг с другом сочетаться и перемешиваться; действиями этими являются: сложение и вычитание, умножение и деление, возведение в степень и извлечение корней; сюда же следует отнести также решение [алгебраических] уравнений. Кроме этих действий, называемых алгебраическими, существует много других, трансцендентных, как-то: показательные, логарифмические и бесчисленные другие, доставляемые интегральным исчислением». Такая трактовка позволяла без труда обращаться с многозначными функциями и не требовала пояснения, над каким полем рассматривается функция: выражение для счёта определено для комплексных значений переменных даже тогда, когда для рассматриваемой задачи это не нужно.

Операции в выражении допускались лишь в конечном числе, а трансцендентное проникало при помощи бесконечно большого числа . В выражениях это число используется наряду с натуральными числами. Напр., считается допустимым такое выражение для экспоненты

,

в котором лишь поздние авторы видели предельный переход. С аналитическими выражениями производились разнообразные преобразования, позволившие Эйлеру найти представления для элементарных функций в виде рядов, бесконечных произведений и т. д. Эйлер преобразует выражения для счёта так, как это делают в алгебре, не обращая внимания на возможность вычислить значение функции в точке по каждой из написанных формул.

В отличие от Лопиталя Эйлер подробно рассматривает трансцендентные функции и в особенности два наиболее изученные их классы - показательные и тригонометрические. Он обнаруживает, что все элементарные функции могут быть выражены при помощи арифметических действий и двух операций - взятия логарифма и экспоненты .

Сам ход доказательства прекрасно демонстрирует технику использования бесконечно большого. Определив синус и косинус при помощи тригонометрического круга, Эйлер выводит из формул сложения следующее:

Полагая и , он получает

,

отбрасывая бесконечно малые величины большего порядка. Используя это и аналогичное выражение, Эйлер получает и свою знаменитую формулу

.

Указав различные выражения для функций, которые теперь называют элементарными, Эйлер переходит к рассмотрению кривых на плоскости, начертанным свободным движением руки. По его мнению, не для всякой такой кривой можно отыскать единое аналитическое выражение (см. также Спор о струне). В XIX веке с подачи Казорати это утверждение считалось ошибочным: по теореме Вейерштрасса всякая непрерывная в современном смысле кривая может быть приближенно описана полиномами. На самом деле Эйлера это едва ли убедило, ведь нужно ещё переписать предельный переход при помощи символа .

Изложение дифференциального исчисления Эйлер начинает с теории конечных разностей, за ним в третьей главе следует философское разъяснение о том, что «бесконечно малое количество есть точно нуль», более всего не устроившее современников Эйлера. Затем из конечных разностей при бесконечно малом приращении образуются дифференциалы, а из интерполяционной формулу Ньютона - формула Тейлора . Этот метод в существенном восходит к работам Тейлора (1715 г.). При этом у Эйлера появляется устойчивое отношение , которое, однако, рассматривается как отношение двух бесконечно малых. Последние главы посвящены приближенному вычислению при помощи рядов.

В трёхтомном интегральном исчислении Эйлер трактует вводит понятие интеграла так:

Та функция, дифференциал которой , называется его интегралом и обозначается знаком , поставленным спереди.

В целом же эта часть трактата Эйлера посвящена более общей с современной точки зрения задаче об интегрировании дифференциальных уравнений. При этом Эйлер находит ряд интегралов и дифференциальных уравнений, которые приводят к новым функциям, напр., -функции, эллиптические функции и т. д. Строгое доказательство их неэлементарности было дано в 1830-х годах Якоби для эллиптических функций и Лиувиллем (см. элементарные функции).

Лагранж

Следующим крупным произведением, сыгравшим значительную роль в развитии концепции анализа, явилась Теория аналитических функций Лагранжа и обширный пересказ работ Лагранжа, выполненный Лакруа в несколько эклектической манере.

Желая избавиться от бесконечно малого вовсе, Лагранж обратил связь между производными и рядом Тейлора. Под аналитической функцией Лагранж понимал произвольную функцию, исследуемую методами анализа. Саму функцию он обозначил как , дав графический способ записи зависимости - ранее же Эйлер обходился одними переменными. Для применения методов анализа по мнению Лагранжа необходимо, чтобы функция разлагалась в ряд

,

коэффициенты которого будут новыми функциями . Остаётся назвать производной (дифференциальным коэффициентом) и обозначить его как . Таким образом, понятие производной вводится на второй странице трактата и без помощи бесконечно малых. Остаётся заметить, что

,

поэтому коэффициент является удвоенной производной производной , то есть

и т. д.

Такой подход к трактовке понятия производной используется в современной алгебре и послужил основой для создания теории аналитических функций Вейерштрасса .

Лагранж оперировал такими рядами как формальными и получил ряд замечательных теорем. В частности, впервые и вполне строго доказал разрешимость начальной задачи для обыкновенных дифференциальных уравнений в формальных степенных рядах.

Вопрос об оценке точности приближений, доставляемых частными суммами ряда Тейлора, впервые был поставлен именно Лагранжем: в конце Теории аналитических функций он вывел то, что теперь называют формулой Тейлора с остаточным членом в форме Лагранжа. Однако, в противоположность современным авторам, Лагранж не видел нужды в употреблении этого результата для обоснования сходимости ряда Тейлора.

Вопрос о том, действительно ли функции, употребимые в анализе, могут быть разложены в степенной ряд, впоследствии стал предметом дискуссии. Конечно, Лагранжу было известно, что в некоторых точках элементарные функции могут не разлагаться в степенной ряд, однако в этих точках они и недифференцируемы ни в каком смысле. Коши в своём Алгебраическом анализе привёл в качестве контрпримера функцию

доопределённую нулём в нуле. Эта функция всюду гладкая на вещественной оси и в нуле имеет нулевой ряд Маклорена, который, следовательно, не сходится к значению . Против этого примера Пуассон возразил, что Лагранж определял функцию как единое аналитическое выражение, в примере Коши же функция задана по разному в нуле, и при . Лишь в конце XIX века Прингсхейм доказал, что существует бесконечно дифференцируемая функция, заданная единым выражением, ряд Маклорена для которой расходится. Пример такой функцией доставляет выражение

.

Дальнейшее развитие

В последней трети XIX века Вейерштрасс произвёл арифметизацию анализа, полагая геометрическое обоснование недостаточным, и предложил классическое определение предела через ε-δ-язык. Он же создал первую строгую теорию множества вещественных чисел . В это же время попытки усовершенствования теоремы об интегрируемости по Риману привели к созданию классификации разрывности вещественных функций. Также были открыты «патологические» примеры (нигде не дифференцируемые непрерывные функции , заполняющие пространство кривые). В связи с этим Жордан разработал теорию меры , а Кантор - теорию множеств , и в начале XX века математический анализ был формализован с их помощью. Другим важным событием XX века стала разработка нестандартного анализа как альтернативного подхода к обоснованию анализа.

Разделы математического анализа

  • Метрическое пространство , Топологическое пространство

См. также

Библиография

Энциклопедические статьи

  • // Энциклопедический лексикон : Спб.: тип. А. Плюшара, 1835-1841. Том 1-17.
  • // Энциклопедический словарь Брокгауза и Ефрона : В 86 томах (82 т. и 4 доп.). - СПб. , 1890-1907.

Учебная литература

Стандартные учебники

На протяжении многих лет в России популярны следующие учебники:

  • Курант, Р. Курс дифференциального и интегрального исчисления (в двух томах). Главная методическая находка курса: сначала попросту излагаются основные идеи, а затем им даются строгие доказательства. Написан Курантом в его бытность профессором Геттингенского университета в 1920-х под влиянием идей Клейна , затем в 1930-х перенесён на американскую почву. Русский перевод 1934 г. и его переиздания дает текст по немецкому изданию, перевод 1960-х годов (т. н. 4-ое издание) представляет собой компиляцию из немецкой и американской версии учебника и в связи с этим весьма многословен.
  • Фихтенгольц Г. М. Курс дифференциального и интегрального исчисления (в трёх томах) и задачник.
  • Демидович Б. П. Сборник задач и упражнений по математическому анализу.
  • Ляшко И. И. и др. Справочное пособие по высшей математике, т. 1-5.

Некоторые ВУЗы имеют собственные руководства по анализу:

  • МГУ , МехМат:
  • Архипов Г. И., Садовничий В. А., Чубариков В. Н. Лекции по мат. анализу.
  • Зорич В. А. Математический анализ. Часть I. М.: Наука, 1981. 544 с.
  • Зорич В. А. Математический анализ. Часть II. М.: Наука, 1984. 640 с.
  • Камынин Л. И. Курс математического анализа (в двух томах). М.: Издательство Московского Университета, 2001.
  • В. А. Ильин , В. А. Садовничий , Бл. Х. Сендов . Математический анализ / Под ред. А. Н. Тихонова . - 3-е изд. , перераб. и доп. - М .: Проспект, 2006. - ISBN 5-482-00445-7
  • МГУ , физфак:
  • Ильин В. А. , Позняк Э. Г. Основы математического анализа (в двух частях). - М .: Физматлит, 2005. - 648 с. - ISBN 5-9221-0536-1
  • Бутузов В. Ф. и др. Мат. анализ в вопросах и задачах
  • Математика в техническом университете Сборник учебных пособий в 21 томе.
  • СПбГУ , физфак:
  • Смирнов В. И. Курс высшей математики, в 5 томах. М.: Наука, 1981 (6-е издание), БХВ-Петербург, 2008 (24-е издание).
  • НГУ , мехмат:
  • Решетняк Ю. Г. Курс математического анализа. Часть I. Книга 1. Введение в математический анализ. Дифференциальное исчисление функций одной переменной. Новосибирск: Изд-во Ин-та математики, 1999. 454 с ISBN 5-86134-066-8 .
  • Решетняк Ю. Г. Курс математического анализа. Часть I. Книга 2. Интегральное исчисление функций одной переменной. Дифференциальное исчисление функций многих переменных. Новосибирск: Изд-во Ин-та математики, 1999. 512 с ISBN 5-86134-067-6 .
  • Решетняк Ю. Г. Курс математического анализа. Часть II. Книга 1. Основы гладкого анализа в многомерных пространствах. Теория рядов. Новосибирск: Изд-во Ин-та математики, 2000. 440 с ISBN 5-86134-086-2 .
  • Решетняк Ю. Г. Курс математического анализа. Часть II. Книга 2. Интегральное исчисление функций многих переменных. Интегральное исчисление на многообразиях. Внешние дифференциальные формы. Новосибирск: Изд-во Ин-та математики, 2001. 444 с ISBN 5-86134-089-7 .
  • Шведов И. А. Компактный курс математического анализа, : Часть 1. Функции одной переменной , Часть 2. Дифференциальное исчисление функций многих переменных .
  • МФТИ , Москва
  • Кудрявцев Л. Д. Курс математического анализа (в трех томах).
  • БГУ , физфак:
  • Богданов Ю. С. Лекции по математическому анализу (в двух частях). - Минск: БГУ, 1974. - 357 с.

Учебники повышенной сложности

Учебники:

  • Рудин У. Основы математического анализа. М., 1976 - небольшая книга, написана очень чётко и сжато.

Задачники повышенной сложности:

  • Г.Полиа, Г.Сеге, Задачи и теоремы из анализа. Часть 1 , Часть 2 , 1978. (Большая часть материала относится к ТФКП)
  • Pascal, E. (Napoli). Esercizii, 1895; 2 ed., 1909 // Internet Archiv

Учебники для гуманитарных специальностей

  • А. М. Ахтямов Математика для социологов и экономистов. - М. : Физматлит, 2004.
  • Н. Ш. Кремер и др. Высшая математика для экономистов. Учебник. 3-е изд. - М. : Юнити, 2010

Задачники

  • Г. Н. Берман. Сборник задач по курсу математического анализа: Учебное пособие для вузов. - 20-е изд. М.:Наука. Главная редакция физико-математической литературы, 1985. - 384 с.
  • П. Е. Данко, А. Г. Попов, Т. Я. Кожевников. Высшая математика в упражнениях и задачах. (В 2-х частях)- М.: Высш.шк, 1986.
  • Г. И. Запорожец Руководство к решению задач по математическому анализу. - М.: Высшая школа, 1966.
  • И. А. Каплан. Практические занятия по высшей математике, в 5 частях.. - Харьков, Изд. Харьковского гос. ун-та, 1967, 1971, 1972.
  • А. К. Боярчук, Г. П. Головач. Диференциальные уравнения в примерах и задачах. Москва. Едиториал УРСС, 2001.
  • А. В. Пантелеев, А. С. Якимова, А. В. Босов. Обыкновенные дифференциальные уравнения в примерах и задачах. «МАИ», 2000
  • А. М. Самойленко, С. А. Кривошея, Н. А. Перестюк. Дифференциальные уравнения: примеры и задачи. ВШ, 1989.
  • К. Н. Лунгу, В. П. Норин, Д. Т. Письменный, Ю.А Шевченко. Сборник задач по высшей математике. 1 курс. - 7-е изд. - М.: Айрис-пресс, 2008.
  • И. А. Марон. Дифференциальное и интегральное исчисление в примерах и задачах (Функции одной переменной). - М., Физматлит, 1970.
  • В. Д. Черненко. Высшая математика в примерах и задачах: Учебное пособие для вузов. В 3 т. - СПб.: Политехника, 2003.

Справочники

Классические произведения

Сочинения по истории анализа

  • Кестнер, Авраам Готтгельф . Geschichte der Mathematik. 4 тома, Геттинген, 1796-1800
  • Кантор, Мориц . Vorlesungen über geschichte der mathematik Leipzig: B. G. Teubner, - . Bd. 1 , Bd. 2 , Bd. 3 , Bd. 4
  • История математики под редакцией А. П. Юшкевича (в трёх томах):
  • Том 1 С древнейших времен до начала Нового времени. (1970)
  • Том 2 Математика XVII столетия. (1970)
  • Том 3 Математика XVIII столетия. (1972)
  • Маркушевич А. И. Очерки по истории теории аналитических функций. 1951
  • Вилейтнер Г. История математики от Декарта до середины XIX столетия. 1960

Примечания

  1. Ср., напр.,курс Cornell Un
  2. Ньютон И. Математические работы . M, 1937.
  3. Leibniz //Acta Eroditorum, 1684. L.M.S., т. V, c. 220-226. Рус. пер.: Успехи Мат. Наук, т. 3, в. 1 (23), с. 166-173.
  4. Лопиталь. Анализ бесконечно малых . М.-Л.:ГТТИ, 1935. (Далее: Лопиталь) // Мат. анализ на EqWorld
  5. Лопиталь, гл. 1, опр. 2.
  6. Лопиталь, гл. 4, опр. 1.
  7. Лопиталь, гл. 1, требование 1.
  8. Лопиталь, гл. 1, требование 2.
  9. Лопиталь, гл. 2, опр.
  10. Лопиталь, § 46.
  11. Лопиталь беспокоится о другом: для него длина отрезка и нужно пояснить, что значит её отрицательность. Замечание, сделанное в § 8-10, можно даже понять так, что при убывании с ростом следует писать , однако далее это не используется.

Математические методы

Формализация и моделирование процессов сбора, движения и преобразования информации связаны с использованием математических методов, реализующих необходимые вычислительные и логические операции, в том числе и в автоматизированных информационных системах. Поэтому правовая информатика тесно связана с математикой и использует методы различных математических наук.

В последнее время при изучении информационных процессов в области права используется теория вероятностей, математическая статистика, математическая логика, исследование операций и многие другие математические науки и дисциплины. Математические методы, специфически преломляясь в теории права, обогащают и усиливают метод правовой науки, но, естественно, не заменяют его.

Сегодня можно говорить, что усилия специалистов, применяющих точные методы математики в правовой области, сосредоточены в двух направлениях: первое - это математическая обработка результатов правовых исследований; второе - исследование структуры права математическими методами. Эти направления составляют основу для создания и применения в правовой области различных автоматизированных систем обработки социально-правовой информации.

Первое направление разрабатывалось еще в 1775 г. Пьером Симоном Лапласом, предложившим использовать методы теории вероятностей для оценки свидетельских показаний, для анализа выборов и решений собраний и для определения вероятностей ошибок в судебных приговорах.

Его последователи Симеон Пуассон и Огюст Курно соответственно в 1837 г. и в 1877 г. опубликовали трактат «Исследование вероятности по материалам уголовных и гражданских судебных решений на основе общих правил исчисления вероятностей» и монографию «Основы теории шансов и вероятностей», в которой глава 15 была названа: «Теория вероятностей судебных решений. Применение ее к статистике гражданских дел». В США эстафету правометрических исследований принял профессор из Мичигана Дж. Шуберт, который в 1959 г. опубликовал работу «Количественный анализ судейского поведения». В 1961 г. Стюарт Нагель опубликовал ряд работ, среди которых «Ожидание вердикта» содержит количественный показатель возможности выиграть или проиграть иски, вытекающие из причинения вреда, в зависимости от наличия в деле целого ряда переменных, которые обрабатываются методом статистических обобщений.

В настоящее время в рамках этого направления успешно применяются различные математические методы для решения следующих задач: количественное описание правовых явлений; обеспечение учета и отчетности в правовой деятельности путем численной обработки различных статистических показателей.

Второе направление основано на идее сведения рассуждений к вычислениям и имеет глубокие исторические корни, восходящие к Р. Декарту. Он подразумевал возможность создания искусственного языка науки, дал его развернутую характеристику и тех громадных выгод, которые связаны с применением последнего. Декарт предполагал наличие некоторого природного порядка в наших мыслях, который сравнивал с порядком в мире чисел. При всем бесконечном множестве чисел каждое из них имеет единственное знаковое представление, следовательно, каждому из них можно дать собственное имя, что позволит действия с ними записывать особым компактным языком. Поскольку для чисел такой универсальный язык разработан, то, по мнению Декарта, со временем будет сконструирован еще более универсальный язык, охватывающий не только числа, но и любые объекты, которые могут стать предметом исследования. Такой язык позволит обозначать любые идеи путем выделения простых представлений и фиксации элементов, из которых состоит каждая мысль. Тем самым будет исключена любая возможность заблуждения. Такой язык противопоставит словам, имеющим неконкретное значение, четко определенные искусственные элементы. Вместо «давайте поспорим» ученые будут говорить «давайте вычислим».

Развитию идеи универсального языка науки большое внимание уделено в работах Г. Лейбница, который заложил фундамент математической логики. По Лейбницу, идеал общего метода, благодаря которому возможно будет систематизировать вечные истины, доказывать их, даже открывать новые, состоит в следующем:

1) необходимо разложить все понятия на простейшие, подобно тому, как в математике составные числа разлагаются на произведение простых множителей. Число простейших понятий в таком языке не может быть велико;

2) обозначив каждое из понятий особым символом, мы получим «алфавит человеческой мысли»;

3) всевозможные комбинации простых понятий дадут нам совокупность сложных. И хотя число первых невелико, однако, как показывают формулы комбинаторики, число их комбинаций может быть почти неисчерпаемым;

4) необходимо ввести особые символы для основных соотношений между понятиями и установить правила употребления и комбинации этих символов.

Таким образом, предполагалось процесс мышления свести к особого рода механическим исчислениям, чем, по существу, и занимается современная символическая логика.

Современная логика создала множество систем, описывающих отдельные фрагменты содержательных рассуждений. Для моделирования структуры правовых норм специально разработана «нормативная логика», предметом исследования которой являются логическая структура и логические связи нормативных высказываний.

Так, оценивая принципы логического моделирования структуры правовых норм, правоотношений и нормативных умозаключений, В. Кнапп и А. Герлох указывают, что лежащая в их основе классификация правовых норм является упрощенной абстракцией действительных правовых норм, носящих сложный характер. Например, исследуя сравнимость и совместимость правовых понятий, эти авторы приходят к выводу, что несравнимость понятий «наследственное право» и «избирательное право» нельзя доказать логическим рассуждением в рамках любой из логических теорий, поскольку наличие общего признака «право» делает формально сравнимыми эти понятия. Для доказательства несравнимости этих понятий, по мнению авторов, нельзя обойтись без аппарата теории права.

Другой вид формализации правовых норм основан на использовании математической логики для моделирования логической структуры правовой нормы.

Математическая логика - современный вид формальной логики, т.е. науки, изучающей умозаключения с точки зрения их формального строения.

Любая мысль в форме понятий, суждений или умозаключений не существует вне языка. Выявить и исследовать логические структуры можно лишь путем анализа языковых выражений.



Под высказыванием принято понимать некоторое предположение, о котором имеет смысл говорить, что оно истинно или ложно. Над высказываниями определены следующие операции:

· конъюнкция (логическое «и»);

· дизъюнкция (логическое «или»);

· отрицание (логическое «не»);

· импликация («если.., то…»).

Так, А.О. Гаврилов предложил, используя логические операции, провести моделирование логической структуры правовой нормы. Цель моделирования - выявить логические (включая латентные) связи правовой нормы. Логическая структура правовой нормы может быть представлена в следующем виде:

((p d ) → ˥ s ) → (˥ d s )

где p - гипотеза нормы;

d - диспозиция;

s - санкция.

Приведенная формализация языка права позволяет промоделировать и проанализировать некоторые правовые нормы с помощью такого нового класса автоматизированных систем правовой информации, как экспертные системы.

Однако необходимо отметить, что применение языка математики для формализации права существенно ограничено. Это определяется во многом тем, что, как признает А.Г. Ольшанецкий, «среди юристов не сложилось еще единого мнения о логической природе, логической специфике юридических понятий, их конструктивной роли в развитии науки правоведения, в образовании нормативно-правового детерминанта, его логического движения в регулятивном механизме общественных систем. Мнения ученых в этом отношении неоднозначны, имеют спорный, порой противоречивый характер. В частности, высказывается мнение, что определенной логической спецификой обладают лишь некоторые понятия уголовного права. В понятиях других отраслей права специфически юридического либо незначительно, либо его вообще нет... Им присущи лишь особенности внелогического характера. В структуре... их содержания, в характере признаков, образующих его, нет каких-либо особенностей, которые давали бы возможность выделить эти понятия в особый класс научных понятий».

По мнению О.А. Гаврилова, существует пять основных причин, по которым математика не может стать универсальным инструментом исследований в области права:

1. С ростом сложности и целостности социально-правового объекта значительно уменьшается возможность его расчленения на формализуемые элементы.

2. Основные категории общественных наук - это сложные, многогранные и многоплановые понятия, связанные множеством неформализуемых связей, таких как базис, надстройка, производительные силы, производственные отношения, государство, право, экономика, политика, демократия.

3. Государство и право, как явления классового общества, представляют собой целостные социально-политические системы. Они характеризуются большим числом качественных признаков и связей, которые не являются ни количественными, ни вероятностными, ни функциональными (в математическом смысле слова) и поэтому не поддаются математической формализации.

4. Проводя сравнительный анализ математических методов и традиционных средств юридической науки, нельзя не видеть их взаимодополняющей противоположности.

5. Отличительная особенность исследований, выполненных на базе традиционных качественных методов, - их всесторонность и многообразность, гибкость охвата явлений. Отличительная черта математических исследований - это их высокая точность. Применяя традиционные приемы юридической науки, исследователь-юрист получает выигрыш в полноте картины, но зато теряет все точности. И наоборот, применяя количественные методы исследования, он выигрывает в точности научного описания, зато теряет в его гибкости и всесторонности.

Следует отметить, что не все юристы придерживаются такой точки зрения. Так, В.П. Павлов, исследуя возможность математизации правовых исследований, не соглашается с высказанной выше точкой зрения О.А. Гаврилова.

По его мнению, история любой науки свидетельствует о том, что на начальном уровне познания, на котором производится накопление научных фактов о наблюдаемых свойствах изучаемых явлений и эмпирических закономерностях (в виде тенденций развития интересующего нас явления в практической жизни), используют приемы наблюдения, эксперимента, измерения, описания, способы обобщения, сравнения анализа и синтеза, классификацию и систематизацию. Для реализации этих способов в правоведении широко используют традиционные общенаучные методы, такие как философский, метод сравнительного правоведения, метод комплексного исследования. Однако подлинно теоретический уровень достигается в том случае, когда выдвигаются научные гипотезы, формулируются законы и создаются теории. Этому уровню соответствуют различные методы объяснения конкретных явлений, среди которых можно выделить гипотетические, структурные, функциональные, метод абстрагирования, включающий в себя идеализацию и обобщение некоторых понятий, и метод обоснования гипотез и построения теорий. Этот уровень достижим только путем привлечения математики как наиболее универсального инструмента анализа материального мира. Диалектическая связь этих двух уровней заключается в том, что установление эмпирических фактов как первоначальный этап познания всегда осуществляется на базе определенных теоретических знаний предшествующего уровня, а сами эмпирические факты являются базой для повышения уровня теоретического знания в исследуемой области. Поэтому взаимодополняющая связь традиционных и математических методов заключается не в их противоположности, а как раз в том, что их универсальность позволяет обеспечить наглядность, точность и полноту исследуемого явления. Благодаря этому расширяется поле для осмысления при помощи традиционных средств тех областей исследуемого явления, которые были скрыты от наблюдателя фрагментарностью эмпирической картины явления.

Таким образом, основным препятствием на пути математического описания правовых норм является неоднозначность понятийного аппарата юридической науки, которая многократно возрастает при некритичном использовании математических средств для его анализа. Противоречие состоит в том, что без применения математического аппарата невозможно обеспечить полноту и точность правовых исследований, а применение математического аппарата невозможно в условиях существующей неоднозначности понятийного аппарата права.

Математическое исследование благодаря своей универсальности применяется в областях, весьма далеких от математики. Это объясняется тем, что любое положение, правило или закон, записанные на математическом языке, ста- новятся инструментом предсказания (прогнозирования), являющегося важнейшей задачей каждого научного исследования.

Основой традиционной (классической) математики является система аксиом, из которых методом дедукции получают результаты, представляемые в виде лемм, теорем и т.п. Получаемые на их основе аналитические решения в пределе являются точными. В рамках этих методов исследуются вопросы существования решений, их единственности, а также устойчивости и сходимости к абсолютно точным решениям при неограниченном возрастании их числа.

Разработка таких методов способствует развитию собственно математики (появлению новых ее разделов и направлений). Однако для решения многих прикладных задач они оказываются малоэффективными, так как для их использования необходимо вводить массу допущений, приводящих к тому, что математическая модель исследуемого процесса оказывается существенно отличающейся от реального физического процесса.

В связи с этим в математике возникло ответвление, называемое прикладной математикой. Ее основное отличие от традиционной состоит в том, что здесь находится не точное, а приближенное решение с точностью, достаточной для инженерных приложений, но без учета тех допущений, которые принимаются в рамках классической математики. Оценка точности полученных решений выполняется путем сравнения с точными решениями каких-либо тестовых задач либо с результатами экспериментальных исследований.

К методам прикладной математики относятся вариационные (Ритца, Треффтца, Канторовича и др.), ортогональные методы взвешенных невязок (Бубнова-Галеркина, Канторовича), коллокаций, моментов, наименьших квадратов и др.; вариационно-разностные методы (конечных элементов, граничных элементов; спектральный метод и др.)- Все они относятся к группе так называемых прямых методов - это такие приближенные аналитические методы решения задач математической физики, которые сводят решение дифференциальных и интегральных уравнений к решению систем алгебраических линейных уравнений. Коротко остановимся на хронологии развития этих методов и их физической сути.

В 1662 г. французский математик П. Ферма сформулировал закон преломления света на границе двух сред следующим образом: из всех возможных путей движения света от пункта А к пункту В реализуется тот, на котором время движения достигает минимума. Это была одна из первых формулировок вариационного принципа.

В 1696 г. И. Бернулли сформулировал задачу нахождения длины пути (траектории), по которому материальная точка, двигаясь от точки А под действием только силы тяжести, за наименьшее время достигает точки В. Нахождение такой кривой, называемой брахистохроной (кривой наискорейшего спуска), сводится к определению минимума функционала

при граничных условиях у (0) = 0; у{а) = у а, являющихся координатами точек начала и конца движения.

Здесь Т - время наискорейшего спуска; g - ускорение силы тяжести.

Введением функционала (а) было положено начало появлению вариационного исчисления. Подобные функционалы в общем виде записываются следующим образом:

при граничных условиях у(а) = А = const, y(b) = В = const.

Обычно в задачах математической физики находятся экстремумы некоторых функций у = у(х). Значение вариационного исчисления заключается в том, что здесь определяются экстремумы более сложных, чем функции, величин - экстремумы функционалов J =J от функций у(х). В связи с чем открылись возможности исследования новых физических объектов и развития новых математических направлений.

В 1774 г. Л. Эйлер показал, что если функция у(х) доставляет минимум линейному интегралу J = J [у (х), то она должна удовлетворять некоторым дифференциальным уравнениям, названным впоследствии уравнениями Эйлера. Открытие этого факта явилось важным достижением математического моделирования (построения математических моделей). Стало ясно, что одна и та же математическая модель может быть представлена в двух эквивалентных видах: в виде функционала или в виде дифференциального уравнения Эйлера (системы дифференциальных уравнений). В связи с этим замена дифференциального уравнения функционалом получила название обратной задачи вариационного исчисления. Таким образом, решение задачи на экстремум функционала можно рассматривать так же, как и решение соответствующего этому функционалу дифференциального уравнения Эйлера. Следовательно, математическая постановка одной и той же физической задачи может быть представлена либо в виде функционала с соответствующими граничными условиями (экстремум этого функционала доставляет решение физической задачи), либо в виде соответствующего этому функционалу дифференциального уравнения Эйлера с теми же граничными условиями (интегрирование этого уравнения доставляет решение поставленной задачи).

Широкому распространению вариационных методов в прикладных науках способствовало появление в 1908 г. публикации В. Ритца, связанной с методом минимизации функционалов, названным впоследствии методом Ритца. Этот метод считается классическим вариационным методом. Основная его идея заключается в том, что искомая функция у = у(х) у доставляющая функционалу (А) с граничными условиями у (а) = А, у(Ъ ) = В минимальное значение, разыскивается в виде ряда

где Cj (i = 0, гг) - неизвестные коэффициенты; (р/(д) (г = 0, п) - координатные функции (алгебраический или тригонометрический полипом).

Координатные функции находятся в таком виде, чтобы они точно удовлетворяли граничным условиям задачи.

Подставляя (с) в (А), после определения производных от функционалаJ по неизвестным С, (г = 0, гг) относительно последних получается система алгебраических линейных уравнений. После определения коэффициентов С, решение задачи в замкнутом виде находится из (с).

При использовании большого числа членов ряда (с) (п - 5 ? °о) в принципе можно получить решение требуемой точности. Однако, как показыва- ют расчеты конкретных задач, матрица коэффициентов С, (г = 0, п) представляет собой заполненную квадратную матрицу с большим разбросом коэффициентов по абсолютной величине. Такие матрицы близки к вырожденным и, как правило, являются плохо обусловленными. Это связано с тем, что они не удовлетворяют ни одному из условий, при которых матрицы могут быть хорошо обусловленными. Рассмотрим некоторые из этих условий.

  • 1. Положительная определенность матрицы (члены, находящиеся на главной диагонали, должны быть положительными и максимальными).
  • 2. Ленточный вид матрицы относительно главной диагонали при минимальной ширине ленты (коэффициенты матрицы, находящиеся вне ленты, равны нулю).
  • 3. Симметричность матрицы относительно главной диагонали.

В связи с этим при увеличении приближений в методе Ритца число обусловленности матрицы, определяемое отношением ее максимального собственного числа к минимальному, устремляется к бесконечно большой величине. А точность получаемого при этом решения ввиду быстрого накопления ошибок округления при решении больших систем алгебраических линейных уравнений может не улучшаться, а ухудшаться.

Наряду с методом Ритца развивался родственный с ним метод Галерки- на. В 1913 г. И. Г. Бубнов установил, что алгебраические линейные уравнения относительно неизвестных С, (/ = 0, п ) из (с) можно получать, не используя функционал вида (А). Математическая постановка задачи в данном случае включает дифференциальное уравнение с соответствующими граничными условиями. Решение, как и в методе Ритца, принимается в виде (с). Благодаря особой конструкции координатных функций ф,(х) решение (с) точно удовлетворяет граничным условиям задачи. Для определения неизвестных коэффициентов С, (г = 0, п) составляется невязка дифференциального уравнения и требуется ортогональность невязки ко всем координатным функциям ф 7 Сг) (/ = i = 0, п). Определяя получающиеся при этом интегралы, относительно неизвестных коэффициентов С, = 0, гг) получаем систему алгебраических линейных уравнений, которая полностью совпадает с системой аналогичных уравнений метода Ритца. Таким образом, при решении одних и тех же задач с использованием одинаковых систем координатных функций методы Ритца и Бубнова - Галеркина приводят к одинаковым результатам.

Несмотря на идентичность получаемых результатов, важным преимуществом метода Бубнова-Галеркина по сравнению с методом Ритца является то, что он не требует построения вариационного аналога (функционала) дифференциального уравнения. Отметим, что подобный аналог не всегда может быть построен. В связи с этим методом Бубнова-Галеркина могут быть решены задачи, для которых классические вариационные методы неприменимы.

Еще одним методом, относящимся к группе вариационных, является метод Канторовича . Его отличительным признаком является то, что в качестве неизвестных коэффициентов в линейных комбинациях вида (с) принимаются не константы, а функции, зависящие от одной из независимых переменных задачи (например, времени). Здесь, как и в методе Бубнова-Галеркина, составляется невязка дифференциального уравнения и требуется ортогональность невязки ко всем координатным функциям (ру(дг) (j = i = 0, п). После определения интегралов относительно неизвестных функций fj(x) будем иметь систему обыкновенных дифференциальных уравнений первого порядка. Методы решения таких систем хорошо разработаны (имеются стандартные программы для ЭВМ).

Одним из направлений при решении краевых задач является совместное использование точных (Фурье, интегральных преобразований и др.) и приближенных (вариационных, взвешенных невязок, коллокаций и др.) аналитических методов. Такой комплексный подход позволяет наилучшим образом использовать положительные стороны этих двух важнейших аппаратов прикладной математики, так как появляется возможность без проведения тонких и громоздких математических расчетов в простой форме получать выражения, эквивалентные главной части точного решения, состоящего из бесконечного функционального ряда. Для практических расчетов, как правило, используется именно эта час- тичная сумма нескольких слагаемых . При использовании таких методов для получения более точных результатов на начальном участке параболической координаты необходимо выполнять большое число приближений. Однако при большом п координатные функции с соседними индексами приводят к алгебраическим уравнениям, связанным почти линейной зависимостью. Матрица коэффициентов в этом случае, являясь заполненной квадратной матрицей, близка к вырожденной и оказывается, как правило, плохо обусловленной. И при п - 3 ? °° приближенное решение может не сходиться даже к слабо точному решению. Решение систем алгебраических линейных уравнений с плохо обусловленными матрицами представляет существенные технические трудности вследствие быстрого накопления ошибок округления. Поэтому такие системы уравнений необходимо решать с большой точностью промежуточных вычислений .

Особое место среди приближенных аналитических методов, позволяющих получать аналитические решения на начальном участке временной (параболической) координаты занимают методы, в которых используется понятие фронта температурного возмущения. Согласно этим методам, весь процесс нагрева или охлаждения тел формально разделяется на две стадии. Первая из них характеризуется постепенным распространением фронта температурного возмущения от поверхности тела к его центру, а вторая - изменением температуры но всему объему тела вплоть до наступления стационарного состояния. Такое разделение теплового процесса по времени на две стадии позволяет осуществлять поэтапное решение задач нестационарной теплопроводности и для каждой из стадий в отдельности, как правило, уже в первом приближении находить удовлетворительные по точности, достаточно простые и удобные в инженерных приложениях расчетные формулы. Данные методы обладают и существенным недостатком, заключающимся в необходимости априорного выбора координатной зависимости искомой температурной функции. Обычно принимаются квадратичная или кубическая параболы. Эта неоднозначность решения порождает проблему точности, так как, принимая заранее тот или иной профиль температурного поля, всякий раз будем получать различные конечные результаты.

Среди методов, в которых используется идея конечной скорости перемещения фронта температурного возмущения, наибольшее распространение получил интегральный метод теплового баланса . С его помощью уравнение в частных производных удается свести к обыкновенному дифференциальному уравнению с заданными начальными условиями, решение которого довольно часто можно получить в замкнутом аналитическом виде. Интегральный метод, например, можно использовать для приближенного решения задач, когда теплофизические свойства не являются постоянными, а определяются сложной функциональной зависимостью, и задач, в которых совместно с теплопроводностью приходится также учитывать и конвекцию. Интегральному методу также присущ отмеченный выше недостаток - априорный выбор температурного профиля, что порождает проблему однозначности решения и приводит к низкой его точности.

Многочисленные примеры применения интегрального метода к решению задач теплопроводности приведены в работе Т. Гудмена . В этой работе наряду с иллюстрацией больших возможностей показана и его ограниченность. Так, несмотря на то что многие задачи успешно решаются интегральным методом, существует целый класс задач, для которых этот метод практически не применим. Это, например, задачи с импульсным изменением входных функций. Причина обусловлена тем, что температурный профиль в виде квадратичной или кубической параболы не соответствует истинному профилю температур для таких задач. Поэтому если истинное распределение температуры в исследуемом теле принимает вид немонотонной функции, то получить удовлетворительное решение, согласующееся с физическим смыслом задачи, ни при каких условиях не удается.

Очевидный путь повышения точности интегрального метода - использование полиномиальных температурных функций более высокого порядка. В этом случае основные граничные условия и условия плавности на фронте температурного возмущения не являются достаточными для определения коэффициентов таких полиномов. В связи с этим возникает необходимость поиска недостающих граничных условий, которые совместно с заданными позволили бы определять коэффициенты оптимального температурного профиля более высокого порядка, учитывающего все физические особенности исследуемой задачи. Такие дополнительные граничные условия могут быть получены из основных граничных условий и исходного дифференциального уравнения их дифференцированием в граничных точках но пространственной координате и но времени .

При исследовании различных задач теплообмена предполагают, что теп- лофизические свойства не зависят от температуры, а в качестве граничных принимают линейные условия. Однако если температура тела изменяется в широких пределах, то ввиду зависимости теплофизических свойств от температуры уравнение теплопроводности становится нелинейным. Его решение значительно усложняется, и известные точные аналитические методы оказываются неэффективными. Интегральный метод теплового баланса позволяет преодолеть некоторые трудности, связанные с нелинейностью задачи. Например, с его помощью уравнение в частных производных с нелинейными граничными условиями приводится к обыкновенному дифференциальному уравнению с заданными начальными условиями, решение которого часто может быть получено в замкнутой аналитической форме.

Известно, что точные аналитические решения в настоящее время получены лишь для задач в упрощенной математической постановке, когда не учитываются многие важные характеристики процессов (нелинейность, переменность свойств и граничных условий и пр.). Все это приводит к существенному отклонению математических моделей от реальных физических процессов, протекающих в конкретных энергетических установках. К тому же точные решения выражаются сложными бесконечными функциональными рядами, которые в окрестностях граничных точек и при малых значениях временной координаты являются медленно сходящимися. Такие решения малопригодны для инженерных приложений, и особенно в случаях, когда решение температурной задачи является промежуточным этапом решения каких-либо других задач (задач термоуиругости, обратных задач, задач управления и др.). В связи с этим большой интерес представляют перечисленные выше методы прикладной математики, позволяющие получать решения, хотя и приближенные, но в аналитической форме, с точностью, во многих случаях достаточной для инженерных приложений. Эти методы позволяют значительно расширить круг задач, для которых могут быть получены аналитические решения по сравнению с классическими методами.

ВВЕДЕНИЕ. ДИСЦИПЛИНА ИССЛЕДОВАНИЕ ОПЕРАЦИЙ И ЧЕМ ОНА ЗАНИМАЕТСЯ

Формирование исследования операций как самостоятельной ветви прикладной математики относится к периоду 40-х и 50-х годов. Последу­ющие полтора десятилетия были отмечены широким применением полу­ченных фундаментальных теоретических результатов к разнообразным практическим задачам и связанным с этим переосмыслением потенци­альных возможностей теории. В результате исследование операций при­обрело черты классической научной дисциплины, без которой немыс­лимо базовое экономическое образование.

Обращаясь к задачам и проблемам, составляющим предмет исследо­вания операций, нельзя не вспомнить о вкладе, внесенном в их решение представителями отечественной научной школы, среди которых в пер­вую очередь должен быть назван Л. В. Канторович, ставший в 1975 г. лауреатом Нобелевской премии за свои работы по оптимальному ис­пользованию ресурсов в экономике.

Начало развития исследования операций как науки традицион­но связывают с сороковыми годами двадцатого столетия. Среди первых исследований в данном направлении может быть назва­на работа Л. В. Канторовича "Математические методы органи­зации и планирования производства", вышедшая в 1939 г. В за­рубежной литературе отправной точкой обычно считается вышедшая в 1947 г. работа Дж. Данцига, посвященная реше­нию линейных экстремальных задач.

Следует отметить, что не существует жесткого, устоявше­гося и общепринятого определения предмета исследования опе­раций. Часто при ответе на данный вопрос говорится, что "исследование операций представляет собой комплекс научных методов для решения задач эффективного управления организационными системами".

Второе определение: Исследование операций – это научная подготовка принимаемого решения – это совокупность методов, предлагаемых для подготовки и нахождения самых эффективных или самых экономичных решений.

Природа систем, фигурирующих в приведенном определении под именем "организационных", может быть самой различной, а их общие математические модели находят применение не толь­ко при решении производственных и экономических задач, но и в биологии, социологических исследованиях и других практи­ческих сферах. Кстати, само название дисциплины связано с применением математических методов для управления военны­ми операциями.

Несмотря на многообразие задач организационного управ­ления, при их решении можно выделить некоторую общую последовательность этапов, через которые проходит любое операционное исследование. Как правило, это:

1. Постановка задачи.

2. Построение содержательной (вербальной) модели рас­сматриваемого объекта (процесса). На данном этапе происходит формализация цели управления объектом, выделение возмож­ных управляющих воздействий, влияющих на достижение сфор­мулированной цели, а также описание системы ограничений на управляющие воздействия.

3. Построение математической модели, т. е. перевод сконст­руированной вербальной модели в ту форму, в которой для ее изучения может быть использован математический аппарат.

4. Решение задач, сформулированных на базе построенной математической модели.

5. Проверка полученных результатов на их адекватность природе изучаемой системы, включая исследование влияния так называемых внемодельных факторов, и возможная коррек­тировка первоначальной модели.

6. Реализация полученного решения на практике.

Центральное место в данном курсе отведено вопросам, отно­сящимся к четвертому пункту приведенной выше схемы. Это делается не потому, что он является самым важным, сложным или интересным, а потому, что остальные пункты существенно зависят от конкретной природы изучаемой системы, в силу чего для действий, которые должны производиться в их рамках, не могут быть сформулированы универсальные и содержательные рекомендации.

В самых разнообразных областях человеческой деятельности встречаются сходные между собой задачи: организация производства, эксплуатация транспорта, боевые действия, расстановка кадров, телефонная связь и т.д. Возникающие в этих областях задачи сходны между собой по постановке, обладают рядом общих признаков и решаются сходными методами.

Пример :

Организуется какое-то целенаправленное мероприятие (система действий), которое можно организовать тем или иным способом. Необходимо выбрать определенное решение из ряда возможных вариантов. Каждый вариант имеет преимущества и недостатки – сразу не ясно, какой из них предпочтительнее. С целью прояснить обстановку и сравнить между собой по ряду признаков различные варианты, организуется серия математических расчетов. Результаты расчетов показывают, на каком варианте остановится.

Математическое моделирование в исследовании операций является, с одной стороны, очень важным и сложным, а с дру­гой - практически не поддающимся научной формализации процессом. Заметим, что неоднократно предпринимавшиеся по­пытки выделить общие принципы создания математических мо­делей приводили либо к декларированию рекомендаций самого общего характера, трудноприложимых для решения конкрет­ных проблем, либо, наоборот, к появлению рецептов, примени­мых в действительности только к узкому кругу задач. Поэтому более полезным представляется знакомство с техникой математического моделирования на конкретных примерах.

1) План снабжения предприятия.

Имеется ряд предприятий, использующих различные виды сырья; имеется ряд сырьевых баз. Базы связаны с предприятиями различными путями сообщения (железные дороги, автотранспорт, водный, воздушный транспорт). Каждый транспорт имеет свои тарифы. Требуется разработать такой план снабжения предприятий сырьем, чтобы потребности в сырье были удовлетворены при минимальных расходах на перевозки.

2) Постройка участка магистрали.

Сооружается участок железнодорожной магистрали. В нашем распоряжении определенное количество средств: людей, техники и т.п. Требуется назначить очередность работ, распределить людей и технику по участкам пути таким образом, чтобы завершить строительство в минимальные сроки.

Выпускается определенный вид изделий. Для обеспечения высокого качества продукции требуется организовать систему выборочного контроля: определить размер контрольной партии, набор тестов, правила отбраковки и т.д. Требуется обеспечить заданный уровень качества продукции при минимальных расходах на контроль.

4) Военные действия.

Целью в данном случае является уничтожение вражеского объекта.

Подобные задачи встречаются в практике часто. Они имеют общие черты. В каждой задаче определена цель – цели эти похожи; заданы некоторые условия – в рамках этих условий и нужно принять решение, чтобы данное мероприятие было наиболее выгодным. В соответствии с этими общими чертами применяются и общие методы.

1. ОБЩИЕ ПОНЯТИЯ

1.1. Цель и основные понятия в исследованиях операций

Операция – это всякая система действий (мероприятие), объединенных единым замыслом и направленных к достижению какой-то цели. Это управляемое мероприятие, то есть от нас зависит, каким способом выбрать некоторые параметры, характеризующие его организацию.

Каждый определенный выбор зависящих от нас параметров называется решением.

Целью исследования операций является предварительное количественное обоснование оптимальных решений.

Те параметры, совокупность которых образует решение, называются элементами решения. В качестве элементов решения могут быть различные числа, векторы, функции, физически признаки и т.д.

Пример : перевозка однородного груза.

Существуют пункты отправления: А 1 , А 2 , А 3 ,…, А m .

Имеются пункты назначения: В 1 , В 2 , В 3 ,…, В n .

Элементами решения здесь будут числа x ij , показывающие, какое количество грузов будет отправлено из i-того пункта отправления в j -ый пункт назначения.

Совокупность этих чисел: x 11 , x 12 , x 13 ,…, x 1 m ,…, x n 1 , x n 2 ,…, x nm образует решение.

Чтобы сравнить между собой различные варианты, необходимо иметь какой-то количественный критерий – показатель эффективности (W ). Данный показатель называется целевой функцией.

Этот показатель выбирается так, чтобы он отражал целевую направленность операции. Выбирая решение, стремимся, чтобы данный показатель стремился к максимуму или к минимуму. Если W – доход, то W max; а если W – расход, то W min.

Если выбор зависит от случайных факторов (погода, отказ техники, колебания спроса и предложения), то в качестве показателя эффективности выбирается среднее значение – математическое ожидание – .

В качестве показателя эффективности иногда выбирают вероятность достижения цели. Здесь цель операции сопровождается случайными факторами и работает по схеме ДА-НЕТ.

Для иллюстрации принципов выбора показателя эффективности вернемся к рассмотренным ранее примерам:

1) План снабжения предприятия.

Показатель эффективности виден в цели. R – число – стоимость перевозок, . При этом все ограничения должны быть выполнены.

2) Постройка участка магистрали.

В задаче большую роль играют случайные факторы. В качестве показателя эффективности выбирают среднее ожидаемое время окончания стройки .

3) Выборочный контроль продукции.

Естественный показатель эффективности, подсказанный формулировкой задачи – это средние ожидаемые расходы на контроль за единицу времени, при условии, что система контролирует обеспечение заданного уровня качества.

Сопровождается физическим или математическим моделированием. Физическое моделирование... макетов и их трудоемкое исследование . Математическое моделирование осуществляют с использованием... на моделирование необходимо проделать следующие операции : 1. вход в меню...

  • Исследование интегрирующего и дифференцирующего усилителей на базе ОУ

    Лабораторная работа >> Коммуникации и связь

    Работы является экспериментальное исследование свойств и характеристик... это одна из основных математических операций и ее электрическая реализация... ДБ Осциллограммы выходных напряжений при исследованиях в импульсном режиме: Интегрирующий усилитель...

  • Математические методы в экономическом анализе

    Контрольная работа >> Экономико-математическое моделирование

    Некоторые методы математического программирования и методы исследования операций , к оптимизационным приближенным - часть методов математического программирования, исследования операций , экономической...

  • Математические игры как средство развития логического мышления

    Дипломная работа >> Педагогика

    Развитие логического мышления. Предмет исследования : математические игры с помощью которых... действий с использованием логических операций . Умственные действия образуют... практических компонентов работы. Сложные операции абстрактного мышления переплетаются с...

  • Математические методы наиболее широко используются при проведении системных исследований. При этом решение практических задач математическими методами последовательно осуществляется по следующему алгоритму:

      математическая формулировка задачи (разработки математической модели);

      выбор метода проведения исследования полученной математической модели;

      анализ полученного математического результата.

    Математическая формулировка задачи обычно представляется в виде чисел, геометрических образов, функций, систем уравнений и т. п. Описание объекта (явления) может быть представлено с помощью непрерывной или дискретной, детерминированной или стохастической и другими математическими формами.

    Математическая модель представляет собой систему математических соотношений (формул, функций, уравнений, систем уравнений), описывающих те или иные стороны изучаемого объекта, явления, процесса или объект (процесс) в целом.

    Первым этапом математического моделирования является постановка задачи, определение объекта и целей исследования, задание критериев (признаков) изучения объектов и управления ими. Неправильная или неполная постановка задачи может свести на нет результаты всех последующих этапов.

    Модель является результатом компромисса между двумя противоположными целями:

      модель должна быть подробной, учитывать все реально существующие связи и участвующие в его работе факторы и параметры;

      в то же время модель должна быть достаточно простой, чтобы можно было получить приемлемые решения или результаты в приемлемые сроки при определенных ограничениях на ресурсы.

    Моделирование можно назвать приближенным научным исследованием. А степень его точности зависит от исследователя, его опыта, целей, ресурсов.

    Допущения, принимаемые при разработке модели, являются следствием целей моделирования и возможностей (ресурсов) исследователя. Они определяются требованиями точности результатов, и как сама модель, являются результатом компромисса. Ведь именно допущения отличают одну модель одного и того же процесса от другой.

    Обычно при разработке модели отбрасываются (не принимаются во внимание) несущественные факторы. Константы в физических уравнениях считаются постоянными. Иногда усредняются некоторые величины, изменяющиеся в процессе (например, температура воздуха может считаться неизменной за какой-то промежуток времени).

      1. Процесс разработки модели

    Это процесс последовательной (и возможно, неоднократной) схематизации или идеализации исследуемого явления.

    Адекватность модели - это ее соответствие тому реальному физическому процессу (или объекту), который она представляет.

    Для разработки модели физического процесса необходимо определить:

    Иногда используется подход, когда применяется модель небольшой полноты, носящая вероятностный характер. Потом с помощью ЭВМ производится ее анализ и уточнение.

    Проверка модели начинается и проходит в самом процессе ее построения, когда выбираются или устанавливаются те или иные взаимосвязи между ее параметрами, оцениваются принятые допущения. Однако после сформирования модели в целом надо проанализировать ее с некоторых общих позиций.

    Математическая основа модели (т. е. математическое описание физических взаимосвязей) должна быть непротиворечивой именно с точки зрения математики: функциональные зависимости должны иметь те же тенденции изменения, что и реальные процессы; уравнения должны иметь область существования не менее диапазона, в котором проводится исследование; в них не должно быть особых точек или разрывов, если их нет в реальном процессе, и т. д. Уравнения не должны искажать логику реального процесса.

    Модель должна адекватно, т. е. по возможности точно, отражать действительность. Адекватность нужна не вообще, а в рассматриваемом диапазоне.

    Расхождения между результатами анализа модели и реальным поведением объекта неизбежны, так как модель - это отражение, а не сам объект.

    На рис. 3. представлено обобщенное представление, которое используется при построении математических моделей.

    Рис. 3. Аппарат для построения математических моделей

    При использовании статических методов наиболее часто используется аппарат алгебры и дифференциальные уравнения с независимыми от времени аргументами.

    В динамических методах таким же образом используются дифференциальные уравнения; интегральные уравнения; уравнения в частных производных; теория автоматического управления; алгебра.

    В вероятностных методах используются: теория вероятностей; теория информации; алгебра; теория случайных процессов; теория Марковских процессов; теория автоматов; дифференциальные уравнения.

    Важное место при моделировании занимает вопрос о подобии модели и реального объекта. Количественные соответствия между отдельными сторонами процессов, протекающих в реальном объекте и его модели, характеризуются масштабами.

    В целом подобие процессов в объектах и модели характеризуется критериями подобия. Критерий подобия - это безразмерный комплекс параметров, характеризующий данный процесс. При проведении исследований в зависимости от области исследований применяют различные критерии. Например, в гидравлике таким критерием является число Рейнольдса (характеризует текучесть жидкости), в теплотехнике - число Нусссельта (характеризует условия теплоотдачи), в механике - критерий Ньютона и т. д.

    Считается, что если подобные критерии для модели и исследуемого объекта равны, то модель является правильной.

    К теории подобия примыкает еще один метод теоретического исследования - метод анализа размерностей, который основан на двух положениях:

      физические закономерности выражаются только произведениями степеней физических величин, которые могут быть положительными, отрицательными, целыми и дробными; размерности обоих частей равенства, выражающего физическую размерность, должны быть одинаковы.

    Последние материалы раздела:

    Интересные факты о физике
    Интересные факты о физике

    Какая наука богата на интересные факты? Физика! 7 класс - это время, когда школьники начинают изучать её. Чтобы серьезный предмет не казался таким...

    Дмитрий конюхов путешественник биография
    Дмитрий конюхов путешественник биография

    Личное дело Федор Филиппович Конюхов (64 года) родился на берегу Азовского моря в селе Чкалово Запорожской области Украины. Его родители были...

    Ход войны Русско японская 1904 1905 карта военных действий
    Ход войны Русско японская 1904 1905 карта военных действий

    Одним из крупнейших военных конфликтов начала XX века является русско-японская война 1904-1905 гг. Ее результатом была первая, в новейшей истории,...