Альдегиды с щелочами. Предельные альдегиды и кетоны

ОПРЕДЕЛЕНИЕ

Безводная серная кислота представляет собой тяжелую, вязкую жидкость, которая легко смешивается с водой в любой пропорции: взаимодействие характеризуется исключительно большим экзотермическим эффектом (~880 кДж/моль при бесконечном разбавлении) и может привести к взрывному вскипанию и разбрызгиванию смеси, если воду добавлять к кислоте; поэтому так важно всегда использовать обратный порядок в приготовлении растворов и добавлять кислоту в воду, медленно и при перемешивании.

Некоторые физические свойства серной кислоты приведены в таблице.

Безводная H 2 SO 4 — замечательное соединение с необычно высокой диэлектрической проницаемостью и очень высокой электропроводностью, которая обусловлена ионной автодиссоциацией (автопротолизом) соединения, а также эстафетным механизмом проводимости с переносом протона, обеспечивающим протекание электрического тока через вязкую жидкость с большим числом водородных связей.

Таблица 1. Физические свойства серной кислоты.

Получение серной кислоты

Серная кислота — самый важный промышленный химикат и самая дешевая из производимых в большом объеме кислот влюбой стране мира.

Концентрированную серную кислоту («купоросное масло») сначала получали нагреванием «зеленого купороса» FeSO 4 ×nH 2 O и расходовали в большом количестве на получение Na 2 SO 4 и NaCl.

В современном процессе получения серной кислоты используется катализатор, состоящий из оксида ванадия(V) с добавкой сульфата калия на носителе из диоксида кремния или кизельгура. Диоксид серы SO 2 получают сжиганием чистойсеры или при обжиге сульфидной руды (прежде всего пирита или руд Си, Ni и Zn) в процессе извлечения этихметаллов.Затем SO 2 окисляют до триоксида, а потом путем растворения в воде получают серную кислоту:

S + O 2 → SO 2 (ΔH 0 — 297 кДж/моль);

SO 2 + ½ O 2 → SO 3 (ΔH 0 — 9,8 кДж/моль);

SO 3 + H 2 O → H 2 SO 4 (ΔH 0 — 130 кДж/моль).

Химические свойства серной кислоты

Серная кислота - сильная двухосновная кислота. По первой ступени в растворах невысокой концентрации она диссоциирует практически нацело:

H 2 SO 4 ↔H + + HSO 4 — .

Диссоциация по второй ступени

HSO 4 — ↔H + + SO 4 2-

протекает в меньшей степени. Константа диссоциации серной кислоты по второй ступени, выраженная через активности ионов, K 2 = 10 -2 .

Как кислота двухосновная, серная кислота образует два ряда солей: средние и кислые. Средние соли серной кислоты называются сульфатами, а кислые - гидросульфатами.

Серная кислота жадно поглощает пары воды и поэтому часто применяется для осушения газов. Способностью поглощать воду объясняется и обугливание многих органических веществ, особенно относящихся к классу углеводов (клетчатка, сахар и т.д.), при действии на них концентрированной серной кислоты. Серная кислота отнимает от углеводов водород и кислород, которые образуют воду, а углерод выделяется в виде угля.

Концентрированная серная кислота, особенно горячая, — энергичный окислитель. Она окисляет HI и HBr (но не HCl) до свободных галогенов, уголь - до CO 2 , серу - до SO 2 . Указанные реакции выражаются уравнениями:

8HI + H 2 SO 4 = 4I 2 + H 2 S + 4H 2 O;

2HBr + H 2 SO 4 = Br 2 + SO 2 + 2H 2 O;

C + 2H 2 SO 4 = CO 2 + 2SO 2 + 2H 2 O;

S + 2H 2 SO 4 = 3SO 2 + 2H 2 O.

Взаимодействие серной кислоты с металлами протекает различно в зависимости от её концентрации. Разбавленная серная кислота окисляет своим ионом водорода. Поэтому она взаимодействует только с теми металлами, которые стоят в ряду напряжений только до водорода, например:

Zn + H 2 SO 4 = ZnSO 4 + H 2 .

Однако свинец не растворяется в разбавленной кислоте, поскольку образующаяся соль PbSO 4 нерастворима.

Концентрированная серная кислота является окислителем за счет серы (VI). Она окисляет металлы, стоящие в ряду напряжений до серебра включительно. Продукты её восстановления могут быть различными в зависимости от активности металла и от условий (концентрация кислоты, температура). При взаимодействии с малоактивными металлами, например с медью, кислота восстанавливается до SO 2:

Cu + 2H 2 SO 4 = CuSO 4 + SO 2 + 2H 2 O.

При взаимодействии с более активными металлами продуктами восстановления могут быть как диоксид, так и свободная сера и сероводород. Например, при взаимодействии с цинком могут протекать реакции:

Zn + 2H 2 SO 4 = ZnSO 4 + SO 2 + 2H 2 O;

3Zn + 4H 2 SO 4 = 3ZnSO 4 + S↓ + 4H 2 O;

4Zn + 5H 2 SO 4 = 4ZnSO 4 + H 2 S + 4H 2 O.

Применение серной кислоты

Применение серной кислоты меняется от страны к стране и от десятилетия к десятилетию. Так, например в США в настоящее время главная область потребления H 2 SO 4 — производство удобрений (70%), за ним следуют химическое производство, металлургия, очистка нефти (~5% в каждой области). В Великобритании распределение потребления по отраслям иное: только 30% производимой H 2 SO 4 используется в производстве удобрений, зато 18% идет на краски, пигменты и полупродукты производства красителей, 16% на химическое производство, 12% на получение мыла и моющих средств, 10% на производство натуральных и искусственных волокон и 2,5% применяется в металлургии.

Примеры решения задач

ПРИМЕР 1

Задание Определите массу серной кислоты, которую можно получить из одной тонны пирита, если выход оксида серы (IV) в реакции обжига составляет 90%, а оксида серы (VI) в реакции каталитического окисления серы (IV) - 95% от теоретического.
Решение Запишем уравнение реакции обжига пирита:

4FeS 2 + 11O 2 = 2Fe 2 O 3 + 8SO 2 .

Рассчитаем количество вещества пирита:

n(FeS 2) = m(FeS 2) / M(FeS 2);

M(FeS 2) = Ar(Fe) + 2×Ar(S) = 56 + 2×32 = 120г/моль;

n(FeS 2) = 1000 кг / 120 = 8,33 кмоль.

Поскольку в уравнении реакции коэффициент при диоксиде серы в два раза больше, чем коэффициент при FeS 2 , то теоретически возможное количество вещества оксида серы (IV) равно:

n(SO 2) theor = 2 ×n(FeS 2) = 2 ×8,33 = 16,66 кмоль.

А практически полученное количество моль оксида серы (IV) составляет:

n(SO 2) pract = η × n(SO 2) theor = 0,9 × 16,66 = 15 кмоль.

Запишем уравнение реакции окисления оксида серы (IV) до оксида серы (VI):

2SO 2 + O 2 = 2SO 3 .

Теоретически возможное количество вещества оксида серы (VI) равно:

n(SO 3) theor = n(SO 2) pract = 15 кмоль.

А практически полученное количество моль оксида серы (VI) составляет:

n(SO 3) pract = η × n(SO 3) theor = 0,5 × 15 = 14,25 кмоль.

Запишем уравнение реакции получения серной кислоты:

SO 3 + H 2 O = H 2 SO 4 .

Найдем количество вещества серной кислоты:

n(H 2 SO 4) = n(SO 3) pract = 14,25 кмоль.

Выход реакции составляет 100%. Масса серной кислоты равна:

m(H 2 SO 4) = n(H 2 SO 4) × M(H 2 SO 4);

M(H 2 SO 4) = 2×Ar(H) + Ar(S) + 4×Ar(O) = 2×1 + 32 + 4×16 = 98 г/моль;

m(H 2 SO 4) = 14,25 × 98 = 1397 кг.

Ответ Масса серной кислоты равна 1397 кг

Сернистая кислота - это неорганическая двухосновная неустойчивая кислота средней силы. Непрочное соединение, известна только в водных растворах при концентрации не более шести процентов. При попытках выделить чистую сернистую кислоту она распадается на оксид серы (SO2) и воду (H2O). Например, при воздействии серной кислоты (H2SO4) в концентрированном виде на сульфит натрия (Na2SO3) вместо сернистой кислоты выделяется оксид серы (SO2). Вот так выглядит данная реакция:

Na2SO3 (сульфит натрия) + H2SO4 (серная кислота) = Na2SO4 (сульфат натрия) + SO2 (серы диоксид) + H2O (вода)

Раствор сернистой кислоты

При его хранении необходимо исключить доступ воздуха. Иначе сернистая кислота, медленно поглощая кислород (O2), превратится в серную.

2H2SO3 (кислота сернистая) + O2 (кислород) = 2H2SO4 (кислота серная)

Растворы сернистой кислоты имеют довольно специфический запах (напоминает запах, остающийся после зажжения спички), наличие которого можно объяснить присутствием оксида серы (SO2), химически не связанного водой.

Химические свойства сернистой кислоты

1. H2SO3) может использоваться в качестве восстановителя или окислителя.

H2SO3 является хорошим восстановителем. С ее помощью можно из свободных галогенов получить галогеноводороды. Например:

H2SO3 (кислота сернистая) + Cl2 (хлор, газ) + H2O (вода) = H2SO4 (кислота серная) + 2HCl (соляная кислота)

Но при взаимодействии с сильными восстановителями данная кислота будет выполнять роль окислителя. Примером может послужить реакция сернистой кислоты с сероводородом:

H2SO3 (кислота сернистая) + 2H2S (сероводород) = 3S (сера) + 3H2O (вода)

2. Рассматриваемое нами химическое соединение образует два - сульфиты (средние) и гидросульфиты (кислые). Эти соли являются восстановителями, так же, как и (H2SO3) сернистая кислота. При их окислении образуются соли серной кислоты. При прокаливании сульфитов активных металлов образуются сульфаты и сульфиды. Это реакция самоокисления-самовосстановления. Например:

4Na2SO3 (сульфит натрия) = Na2S + 3Na2SO4 (сульфат натрия)

Сульфиты натрия и калия (Na2SO3 и K2SO3) применяются при крашении тканей в текстильной промышленности, при отбеливании металлов, а также в фотографии. Кальция гидросульфит (Ca(HSO3)2), существующий только в растворе, используется для переработки древесного материала в специальную сульфитную целлюлозу. Из нее потом делают бумагу.

Применение сернистой кислоты

Сернистая кислота используется:

Для обесцвечивания шерсти, шелка, древесной массы, бумаги и других аналогичных веществ, не выдерживающих отбеливания при помощи более сильных окислителей (например, хлора);

Как консервант и антисептик, например, для предотвращения ферментации зерна при получении крахмала или для предотвращения процесса брожения в бочках вина;

Для сохранения продуктов, например, при консервировании овощей и плодов;

В переработке в целлюлозу сульфитную, из которой потом получают бумагу. В этом случае используется раствор кальция гидросульфита (Ca(HSO3)2), который растворяет лигнин - особое вещество, связывающее волокна целлюлозы.

Сернистая кислота: получение

Данную кислоту можно получить посредством растворения сернистого газа (SO2) в воде (H2O). Вам понадобятся серная кислота в концентрированном виде (H2SO4), медь (Cu) и пробирка. Алгоритм действий:

1. Осторожно налейте в пробирку концентрированную сернистую кислоту и затем поместите туда кусочек меди. Нагрейте. Происходит следующая реакция:

Cu (медь) + 2H2SO4 (серная кислота) = CuSO4 (сульфат серы) + SO2 (сернистый газ) + H2O (вода)

2. Поток сернистого газа необходимо направить в пробирку с водой. При его растворении частично происходит с водой, в результате которой образуется сернистая кислота:

SO2 (сернистый газ) + H2O (вода) = H2SO3

Итак, пропуская сернистый газ через воду, можно получить сернистую кислоту. Стоит учесть, что данный газ оказывает раздражающее воздействие на оболочки дыхательных путей, может вызвать их воспаление, а также потерю аппетита. При длительном его вдыхании возможна потеря сознания. Обращаться с этим газом нужно с предельной осторожностью и внимательность.

Кислоты — это химические соединения, состоящие из атомов водорода и кислотных остатков, к примеру, SO4, SO3, PO4 и т. д. Они бывают неорганическими и органическими. К первым относятся соляная, фосфорная, сульфидная, азотная, серная кислота. Ко вторым — уксусная, пальмитиновая, муравьиная, стеариновая и т. д.

Что такое серная кислота

Эта кислота состоит из двух атомов гидрогена и кислотного остатка SO4. Она имеет формулу H2SO4.

Серная кислота или, как она еще называется, сульфатная, относится к неорганическим кислородосодержащим двухосновным кислотам. Это вещество считается одним из самых агрессивных и химически активных. В большинстве химических реакций она выступает в качестве окислителя. Эта кислота может использоваться в концентрированном или разбавленном виде, в этих двух случаях она имеет немного различные химические свойства.

Физические свойства

Серная кислота в нормальных условиях имеет жидкое состояние, температура ее кипения составляет примерно 279,6 градуса по Цельсию, температура замерзания, когда она превращается в твердые кристаллики, — около -10 градусов для стопроцентной и около -20 для 95-процентной.

Чистая стопроцентная сульфатная кислота представляет собой маслянистое жидкое вещество без запаха и цвета, которое обладает почти вдвое большей плотностью, нежели вода — 1840 кг/м3.

Химические свойства сульфатной кислоты

Серная кислота реагирует с металлами, их оксидами, гидроксидами и солями. Разбавленная водой в различных пропорциях, она может вести себя по-разному, поэтому рассмотрим подробнее свойства концентрированного и слабого раствора серной кислоты по отдельности.

Концентрированный раствор серной кислоты

Концентрированным считается раствор, в котором содержится от 90 процентов сульфатной кислоты. Такой раствор серной кислоты способен реагировать даже с малоактивными металлами, а также с неметаллами, гидроксидами, оксидами, солями. Свойства такого раствора сульфатной кислоты схожи с таковыми у концентрированной нитратной кислоты.

Взаимодействие с металлами

При химической реакции концентрированного раствора сульфатной кислоты с металлами, находящимися правее водорода в электрохимическом ряду напряжений металлов (то есть с не самыми активными), образуются такие вещества: сульфат того металла, с которым происходит взаимодействие, вода и диоксид серы. К металлам, в результате взаимодействия с которыми образуются перечисленные вещества, относятся медь (купрум), ртуть, висмут, серебро (аргентум), платина и золото (аурум).

Взаимодействие с неактивными металлами

С металлами, которые стоят левее водорода в ряду напряжений, концентрированная серная кислота ведет себя немного по-другому. В результате такой химической реакции образуются следующие вещества: сульфат определенного металла, сероводород либо чистая сера и вода. К металлам, с которыми проходит подобная реакция, относятся также железо (ферум), магний, манган, бериллий, литий, барий, кальций и все остальные, находящиеся в ряду напряжений левее водорода, кроме алюминия, хрома, никеля и титана — с ними концентрированная сульфатная кислота во взаимодействие не вступает.

Взаимодействие с неметаллами

Данное вещество — сильный окислитель, поэтому оно способно участвовать в окислительно-восстановительных химических реакциях с неметаллами, такими как, к примеру, углерод (карбон) и сера. В результате таких реакций обязательно выделяется вода. При добавлении этого вещества к углероду также выделяется углекисый газ и диоксид сульфура. А если добавить кислоту к сере, получим только диоксид серы и воду. В такой химической реакции сульфатная кислота играет роль окислителя.

Взаимодействие с органическими веществами

Среди реакций серной кислоты с органическими веществами можно выделить обугливание. Такой процесс происходит при столкновении данного вещества с бумагой, сахаром, волокнами, деревом и т. д. При этом в любом случае выделяется углерод. Карбон, который образовался в процессе реакции, может частично взаимодействовать с серной кислотой при ее избытке. На фото показана реакция сахара с раствором сульфатной кислоты средней концентрации.

Реакции с солями

Также концентрированный раствор H2SO4 реагирует с сухими солями. В этом случае происходит стандартная реакция обмена, при которой образуется сульфат металла, который присутствовал в структуре соли, и кислота с остатком, который был в составе соли. Однако с растворами солей концентрированная серная кислота не вступает в реакцию.

Взаимодействие с другими веществами

Также данное вещество может вступать в реакции с оксидами металлов и их гидроксидами, в этих случаях происходят реакции обмена, в первом выделяется сульфат металла и вода, во втором - то же самое.

Химические свойства слабого раствора сульфатной кислоты

Разбавленная серная кислота реагирует с многими веществами и имеет такие же свойства, как и все кислоты. Она, в отличие от концентрированной, вступает во взаимодействие только с активными металлами, то есть теми, которые находятся левее водорода в ряду напряжений. В таком случае происходит такая же реакция замещения, как и в случае с любой кислотой. При этом выделяется водород. Также такой раствор кислоты взаимодействует с растворами солей, в результате чего происходит реакция обмена, уже рассмотренная выше, с оксидами — так же, как и концентрированная, с гидроксидами - тоже так же. Кроме обыкновенных сульфатов, существуют также гидросульфаты, которые являются продуктом взаимодействия гидроксида и серной кислоты.

Как узнать, что в растворе содержится серная кислота или сульфаты

Для определения, присутствуют ли эти вещества в растворе, применяется специальная качественная реакция на сульфат-ионы, которая позволяет это узнать. Она заключается в добавлении бария или его соединений в раствор. В результате этого может выпасть осадок белого цвета (сульфат бария), что показывает наличие сульфатов или серной кислоты.

Как добывают серную кислоту

Самым распространенным способом промышленного получения данного вещества является добыча его из пирита железа. Этот процесс происходит в три этапа, на каждом из которых происходит определенная химическая реакция. Рассмотрим их. Сначала к пириту добавляют кислород, вследствие чего образуется оксид ферума и диоксид серы, который используется для дальнейших реакций. Это взаимодействие происходит при высокой температуре. Далее следует этап, на котором посредством добавления кислорода в присутствии катализатора, в качестве которого выступает оксид ванадия, получают триоксид серы. Теперь, на последней стадии, к полученному веществу добавляют воду, при этом получают сульфатную кислот. Это самый распространенный процесс промышленного добывания сульфатной кислоты, он используется наиболее часто потому, что пирит - самое доступное сырье, подходящее для синтеза описанного в этой статье вещества. Серную кислоту, полученную с помощью такого процесса, используют в различных сферах промышленности - как в химической, так и во многих других, к примеру, при переработке нефти, обогащении руд и т. д. Также ее использование часто предусмотрено в технологии изготовления множества синтетических волокон.

Азотная кислота - HNO3, кислородосодержащая одноосновная сильная кислота. Твёрдая азотная кислота образует две кристаллические модификации с моноклинной и ромбической решётками. Азотная кислота смешивается с водой в любых соотношениях. В водных растворах она практически полностью диссоциирует на ионы. Образует с водой азеотропную смесь с концентраций 68,4 % и tкип120 °C при 1 атм. Известны два твёрдых гидрата: моногидрат (HNO3 H2O) и тригидрат (HNO3 3H2O).
Высококонцентрированная HNO3 имеет обычно бурую окраску вследствие происходящего на свету процесса разложения:

HNO3 ---> 4NO2 + O2 + 2H2O

При нагревании азотная кислота распадается по той же реакции. Азотную кислоту можно перегонять (без разложения) только при пониженном давлении.

Азотная кислота является сильным окислителем , концентрированная азотная кислота окисляет серу до серной, а фосфор - до фосфорной кислоты, некоторые органические соединения (например, амины и гидразин, скипидар) самовоспламеняются при контакте с концентрированной азотной кислотой.

Степень окисленности азота в азотной кислоте равна 4-5. Выступая в качестве окислителя, НNО может восстанавливаться до различных продуктов:

Какое из этих веществ образуется, т. е. насколько глубоко восстанавливается азотная кислота в том или ином случае, зависит от природы восстановителя и от условий реакции, прежде всего от концентрации кислоты. Чем выше концентрации HNO , тем менее глубоко она восстанавливается. При реакциях с концентрированной кислотой чаще всего выделяется .

При взаимодействии разбавленной азотной кислоты с малоактивными металлами , например, с медью, выделяется NO. В случае более активных ме­таллов - железа, цинка, - образуется .

Сильно разбавленная азотная кислота взаимодействует с активными металлами -цинком, магнием, алюминием -- с образованием иона аммония, даю­щего с кислотой нитрат аммония. Обычно одновременно образуют­ся несколько продуктов.

Золото, некоторые металлы платиновой группы и тантал инертны к азотной кислоте во всём диапазоне концентраций, остальные металлы реагируют с ней, ход реакции при этом определяется её концентрацией. Так, концентрированная азотная кислота реагирует с медью с образованием диоксида азота, а разбавленная - оксида азота (II):

Cu + 4HNO3----> Cu(NO3)2 + NO2 + 2H2O

3Cu + 8 HNO3 ----> 3Cu(NO3)2 + 2NO + 4H2O

Большинство металло в реагируют с азотной кислотой с выделением оксидов азота в различных степенях окисления или их смесей, разбавленная азотная кислота при реакции с активными металлами может реагировать с выделением водорода и восстановлением нитрат-иона до аммиака.

Некоторые металлы (железо, хром, алюминий), реагирующие с разбавленной азотной кислотой, пассивируются концентрированной азотной кислотой и устойчивы к её воздействию.

Смесь азотной и серной кислот носит название «меланж». Азотная кислота широко используется для получения нитросоединений.

Смесь трех объёмов соляной кислотой и одного объёма азотной называется «царской водкой». Царская водка растворяет большинство металлов, в том числе и золото. Её сильные окислительные способности обусловлены образующимся атомарным хлором и хлоридом нитрозила:

3HCl + HNO3 ----> NOCl + 2 =2H2O

Серная кислота – тяжелая маслянистая жидкость, не имеющая цвета. Смешивается с водой в любых отношениях.

Концентрированная серная кислота активно поглощает воду из воздуха, отнимает её от других веществ. При попадании органических веществ в концентрированную серную кислоту происходит их обугливание, например, бумаги:

(C6H10O5)n + H2SO4 => H2SO4 + 5nH2O + 6C

При взаимодействии концентрированной серной кислоты с сахаром образуется пористая угольная масса, похожая на черную затвердевшую губку:

C12H22O11 + H2SO4 => C + H2O + CO2 + Q

Химические свойства разбавленной и концентрированной серной кислоты отличаются.

Разбавленныерастворы серной кислоты реагируют с металлами , расположенными в электрохимическом ряду напряжений левее водорода, с образованием сульфатов и выделением водорода.

Концентрированные растворы серной кислоты проявляют сильные окислительные свойства, обусловленные наличием в её молекулах атома серы в высшей степени окисления (+6), поэтому концентрированная серная кислота является сильным окислителем. Так окисляются некоторые неметаллы:

S + 2H2SO4 => 3SO2 + 2H2O

C + 2H2SO4 => CO2 + 2SO2 + 2H2O

P4 + 8H2SO4 => 4H3PO4 + 7SO2 + S + 2H2O

H2S + H2SO4 => S + SO2 + 2H2O

Она взаимодействует с металлами , расположенными в электрохимическом ряду напряжений металлов правее водорода (медь, серебро, ртуть), с образованием сульфатов, воды и продуктов восстановления серы. Концентрированные растворы серной кислоты не реагируют с золотом и платиной вследствие их малой активности.

а) малоактивные металлы восстанавливают серную кислоту до диоксида серы SO2:

Cu + 2H2SO4 => CuSO4 + SO2 + 2H2O

2Ag + 2H2SO4 => Ag2SO4 + SO2 + 2H2O

б) с металлами средней активности возможны реакции с выделением любого из трех продуктов восстановления серной кислоты:

Zn + 2H2SO4 => ZnSO4 + SO2 + 2H2O

3Zn + 4H2SO4 => 3ZnSO4 + S + 4H2O

4Zn + 5H2SO4 => 4ZnSO4 + H2S + 2H2O

в) с активными металлами могут выделяться сера или сероводород:

8K + 5H2SO4 => 4K2SO4 + H2S + 4H2O

6Na + 4H2SO4 => 3Na2SO4 + S + 4H2O

г) с алюминием, железом, хромом, кобальтом, никелем концентрированная серная кислота на холод (то есть без нагревания) не взаимодействует - происходит пассивирование этих металлов. Поэтому серную кислоту можно перевозить в железной таре. Однако при нагревании возможно взаимодействие с ней и железа, и алюминия:

2Fe + 6H2SO4 => Fe2(SO4)3 + 3SO2 + 6H2O

2Al + 6H2SO4 => Al2(SO4)3 + 3SO2 + 6H2O

Т.О. глубина восстановления серы зависит от восстановительных свойств металлов. Активные металлы (натрий, калий, литий) восстанавливают серную кислоту до сероводорода, металлы, расположенные в ряду напряжений от алюминия до железа - до свободной серы, а металлы с меньшей активностью - до сернистого газа.

Получение кислот.

1. Бескислородные кислоты получают путем синтеза водородных соединений неметаллов из простых веществ и последующего растворения полученных продуктов в воде

Неметалл + H 2 = Водородное соединение неметалла

H 2 + Cl 2 = 2HCl

2. Оксокислоты получают взаимодействием кислотных оксидов с водой.

Кислотный оксид + H 2 O = Оксокислота

SO 3 + H 2 O = H 2 SO 4

3. Большинство кислот можно получить взаимодействием солей с кислотами.

Соль + Кислота = Соль + Кислота

2NaCl + H 2 SO 4 = 2HCl + Na 2 SO 4

Основания– это сложные вещества, молекулы которых состоят из атома металла и одной или нескольких гидроксидных групп .

Основания - это электролиты, которые диссоциируют с образованием катионов металлического элемента и гидроксид-анионов.

Например:
КОН = К +1 + ОН -1

6.Классификация оснований:

1.По числу гидроксильных групп в молекуле:

а)· Однокислотные, молекулы которых содержат одну гидроксидную группу.

б)· Двухкислотные, молекулы которых содержат две гидроксидные группы.

в)· Трехкислотные, молекулы которых содержат три гидроксидые группы.
2. По растворимости в воде: Растворимые и Нерастворимые.

7.Физические свойства оснований :

Все неорганические основания– твердые вещества (кроме гидроксида аммония). Основания имеют разный цвет: гидроксид калия-белого цвета, гидроксид меди-голубого, гидроксид железа-красно-бурого.

Растворимые основания образуют мыльные на ощупь растворы, через что эти вещества получили название щелочь.

Щёлочи образуют лишь 10 элементов периодической системы химических элементов Д. И. Менделеева: 6 щелочных металлов – литий, натрий, калий, рубидий, цезий, франций и 4 щелочноземельных металла – кальций, стронций, барий, радий.

8.Химические свойства оснований:

1. Водные растворы щелочей изменяют окраску индикаторов. фенолфталеин - малиновый, метилоранж - желтый. Это обеспечивается свободным присутствием гидроксогрупп в растворе. Именно поэтому малорастворимые основания такой реакции не дают.

2. Взаимодействуют :

а) с кислотами : Основание + Кислота = Соль + H 2 O

KOH + HCl = KCl + H 2 O

б) с кислотными оксидами: Щелочь + Кислотный оксид = Соль + H 2 O

Ca(OH) 2 + CO 2 = CaCO 3 + H 2 O

в) с растворами: Раствор щелочи + Раствор соли = Новое основание + Новая соль

2NaOH + CuSO 4 = Cu(OH) 2 + Na 2 SO 4

г) с амфотерными металлами : Zn + 2NaOH = Na 2 ZnO 2 + H 2

Амфотерные гидроксиды:

а) Реагируют с кислотами с образованием соли и воды:

Гидроксид меди (II) + 2HBr = CuBr2 + вода.

б). Реагируют с щелочами: итог - соль и вода (условие: сплавление):

Zn(OH)2 + 2CsOH = соль + 2H2O.

в). Реагируют с сильными гидроксидами: итог - соли, если реакция идет в водном растворе: Cr(OH)3 + 3RbOH = Rb3

Нерастворимые в воде основания при нагревании разлагаются на основной оксид и воду:

Нерастворимое основание = Основной оксид + H 2 O

Cu(OH) 2 = CuO + H 2 O

Соли – это продукты неполного замещения атомов водорода в молекулах кислот атомами металла или это продукты замещения гидроксидных групп в молекулах оснований кислотными остатками .

Соли - это электролиты, которые диссоциируют с образованием катионов металлического элемента и анионов кислотного остатка.

Например:

К 2 СО 3 = 2К +1 + СО 3 2-

Классификация:

Нормальные соли . Это продукты полного замещения атомов водорода в молекуле кислоты атомами неметалла, или продукты полного замещения гидроксидных групп в молекуле основания кислотными остатками.

Кислые соли . Это продукты неполного замещения атомов водорода в молекулах многоосновных кислот атомами металла.

Основные соли. Это продукты неполного замещения гидроксидных групп в молекулах многокислотных оснований кислотными остатками.

Типы солей:

Двойные соли - в их составе присутствует два различных катиона, получаются кристаллизацией из смешанного раствора солей с разными катионами, но одинаковыми анионами.

Смешанные соли - в их составе присутствует два различных аниона.

Гидратные соли (кристаллогидраты) - в их состав входят молекулы кристаллизационной воды.

Комплексные соли - в их состав входит комплексный катион или комплексный анион.

Особую группу составляют соли органических кислот , свойства которых значительно отличаются от свойств минеральных солей. Некоторые из них можно отнести к особенному классу органических солей, так называемых ионных жидкостей или по-другому «жидких солей» , органических солей с температурой плавления ниже 100 °C.

Физические свойства:

Большинство солей-твердые вещества белого цвета. Некоторые соли имеют окраску. Например, дихромат калия-оранжевого, сульфат никеля-зеленого.

По растворимости в воде соли делятся на растворимые в воде, малорастворимые в воде и нерастворимые.

Химические свойства:

Растворимые соли в водных растворах диссоциируют на ионы:

1. Средние соли диссоциируют на катионы металлов и анионы кислотных остатков:

· Кислые соли диссоциируют на катионы металла и сложные анионы:

KHSO 3 = K + HSO 3

· Основные металлы диссоциируют на сложные катионы и анионы кислотных остатков:

AlOH(CH 3 COO) 2 = AlOH + 2CH 3 COO

2. Соли взаимодействуют с металлами с образованием новой соли и нового металла: Ме(1) + Соль(1) = Ме(2) + Соль(2)

CuSO 4 + Fe = FeSO 4 + Cu

3. Растворы взаимодействуют с щелочами Раствор соли + Раствор щелочи = Новая соль + Новое основание:

FeCl 3 + 3KOH = Fe(OH) 3 + 3KCl

4. Соли взаимодействуют с кислотами Соль + Кислота = Соль + Кислота:

BaCl 2 + H 2 SO 4 = BaSO 4 + 2HCl

5. Соли могут взаимодействовать между собой Соль(1) + Соль(2) = Соль(3) + Соль(4):

AgNO 3 + KCl = AgCl + KNO 3

6. Основные соли взаимодействуют с кислотами Основная соль + Кислота = Средняя соль + H 2 O:

CuOHCl + HCl = CuCl 2 + H 2 O

7. Кислые соли взаимодействуют с щелочами Кислая соль + Щелочь = Средняя соль + H 2 O:

NaHSO 3 + NaOH = Na 2 SO 3 + H 2 O

8. Многие соли разлагаются при нагревании: MgCO 3 = MgO + CO 2

Представители солей и их значение:

Соли повсеместно используются как в производстве, так и в повседневной жизни:

Соли соляной кислоты. Из хлоридов больше всего используют хлорид натрия и хлорид калия.

Хлорид натрия (поваренную соль) выделяют из озерной и морской воды, а также добывают в соляных шахтах. Поваренную соль используют в пищу. В промышленности хлорид натрия служит сырьём для получения хлора, гидроксида натрия и соды.

Хлорид калия используют в сельском хозяйстве как калийное удобрение.

Соли серной кислоты. В строительстве и в медицине широко используют полуводный гипс, получаемый при обжиге горной породы (дигидрат сульфата кальция). Будучи смешан с водой, он быстро застывает, образуя дигидрат сульфата кальция, то есть гипс.

Декагидрат сульфата натрия используют в качестве сырья для получения соды.

Соли азотной кислоты. Нитраты больше всего используют в качестве удобрений в сельском хозяйстве. Важнейшим из них является нитрат натрия, нитрат калия,нитрат кальция и нитрат аммония. Обычно эти соли называют селитрами.

Из ортофосфатов важнейшим является ортофосфат кальция. Эта соль служит основной составной частью минералов - фосфоритов и апатитов. Фосфориты иапатиты используются в качестве сырья в производстве фосфорных удобрений,например, суперфосфата и преципитата.

Соли угольной кислоты. Карбонат кальция используют в качестве сырья для получения извести.

Карбонат натрия (соду) применяют в производстве стекла и при варке мыла.
- Карбонат кальция в природе встречается и в виде известняка, мела и мрамора.

Материальный мир, в котором мы живем и крохотной частичкой которого мы являемся, един и в то же время бесконечно разнообразен. Единство и многообразие химических веществ этого мира наиболее ярко проявляется в генетической связи веществ, которая отражается в так называемых генетических рядах.

Генетической называют связь между веществами разных классов, основанную на их взаимопревращениях.

Если основу генетического ряда в неорганической химии составляют вещества, образованные одним химическим элементом, то основу генетического ряда в органической химии (химии углеродных соединений) составляют вещества с одинаковым числом атомов углерода в молекуле.

Контроль знаний:

1. Дать определение солям, основаниям, кислотам, их характеристику, основных характерных реакций.

2.Почему кислоты и основания объединяются в группу гидроксиды? Что у них общего и чем они отличаются? Почему щелочь нужно приливать к раствору соли алюминия, а не наоборот?

3. Задание: Приведите примеры уравнений реакций, иллюстрирующих указанные общие свойства нерастворимых оснований.

4. Задание: Определите степень окисления атомов металлических элементов в приведенных формулах. Какая закономерность прослеживается между их степенью окисления в оксиде и основе?

ДОМАШНЕЕ ЗАДАНИЕ:

Проработать: Л2.стр.162-172,пересказ конспекта лекции №5.

Записать уравнения возможных реакций согласно схемам, указать типы реакций: а) НСl + СаО ... ;
б) НСl + Аl(ОН) 3 ... ;
в) Mg + HCl ... ;
г) Hg + HCl ... .

Разделить вещества по классам соединений. Формулы веществ: H 2 SO 4 , NaOH, CuCl 2 , Na 2 SO 4 , CaO, SO 3 , H 3 PO 4 , Fe(OH) 3 , AgNO 3 , Mg(OH) 2 , HCl, ZnO, CO 2 , Cu 2 O, NO 2

Лекция № 6.

Тема: Металлы . Положение металлических элементов в периодической системе. Нахождение металлов в природе. Металлы. Взаимодействие металлов с неметаллами (хлором, серой и кислородом).

Оборудование : периодическая система химических элементов, коллекция металлов, ряд активности металлов.

План изучения темы

(перечень вопросов, обязательных к изучению):

1. Положение элементов - металлов в периодической системе, строение их атомов.

2. Металлы как простые вещества. Металлическая связь, металлические кристаллические решетки.

3. Общие физические свойства металлов.

4. Распространенность металлических элементов и их соединений в природе.

5. Химические свойства элементов-металлов.

6. Понятие о коррозии.

H 2 SO 4 сильная 2х основная кислота , гигроскопичная.

HSO 4 - - гидросульфаты, SO 4 2- сульфаты.

Катион Ва используется для обнаружения сульфат ионов:

Взаимодействие серной к-ты с Ме протекает по разному в зависимости от концентрации к-ты и активности Ме.

Разбавленая к-та взаимодействует только с Ме в ряду активности до Н:

Конц. кислота является сильным окислителем за счет S 6+ она окисляет Ме в ряду по Ag, продуктами ее взаимодействия м/б разные в-ва в зависимости от активности Ме и условий реакции:

    Конц. холодная к-та не взаимодействует с Fe Al Cr

    С малоактивными Ме к-та восстанавливаеся до SO 2:

    С активными Ме продукты восстановления м/б SO 2 , S, H 2 S:

    Окислительные св-ва конц. К-ты проявляются и при взаимодействии с другими восстановителями. Она окисляет HBr, HI (но не соляную) и их соли до свободных галогенов а также С, S, H 2 S, Р:

19. Общая характеристика d - элементов VI группы. Химические свойства: оксиды и гидроксиды, зависимость проявления кислотно-основных свойств от степени окисления элемента. Комплексы и кислоты, содержащие хром.

Cr, Mo и W образуют подгруппу хрома. В ряду Cr – Mo – W увеличивается энергия ионизации, т.е. уплотняются электронные оболочки атомов, в особенности сильно при переходе от Mo к W. Последний вследствие лантаноидного сжатия имеет атомный и ионный радиусы, близкие к таковым у Mo. Поэтому молибден и вольфрам по свойствам ближе друг к другу, чем к хрому. Для хрома наиболее характерна степень окисления +3 и в меньшей мере +6. Для Mo и W наиболее характерна высшая степень окисления +6. В ряду Cr – Mo – W повышается температура плавления и теплоты атомизации (возгонки). Это объясняется усилением в металлическом кристалле ковалентной связи, возникающей за счет d – электронов.

Чистые Mo и W получают восстановлением галогенидов:

MoF 6 + 3 H 2 → Mo + 6 HF (1200 0 С)

При обычных условиях все 3 Ме взаимодействуют лишь с фтором, но при нагревании соединяются с другими неМе.

Не реагируют с водородом.

От хрома к вольфраму снижается активность.

Cr растворяется в разбавленных HCl и H 2 SO 4 с образованием CrCl 2 и CrSO 4 .

Молибден медленно реагирует с азотной кислотой, быстрее – с «царской водкой» и смесью HNO 3 и HF или H 2 SO 4 .

Вольфрам также растворяется в смеси HF и HNO 3 .

В присутствии окислителей все три металла реагируют с щелочными расплавами с образованием соответственно хроматов, молибдатов и вольфраматов.

W + 8 HF + 2 HNO 3 = H 2 + 2 NO + 4 H 2 O

Соединения Хром(II ) оксид хрома (II) получается при взаимодействии хлорида хрома со щелочами. Хлорид хрома получают при растворенни хрома в соляной к-те:

Неустойчивы, быстро окисляются кислородом воздуха и переходят в хром (III)

Соединения Хром (III ) оксид хрома (III) нерастворим в воде, ни в к-тах ни в щелочах, его амфотерная природа проявляется только при сплавлении с соответствующими соединениями:

Cr 2 O 3 + 2 NaOH = 2 NaCrO 2 + H 2 O

При действии щелочей на соли хрома (III) выпадает осадок гидроксида хрома(III):

Cr 3+ + 3 OH - = Cr(OH) 3 ↓

Cr(OH) 3 – амфотер

При взаимодействии со щелочами образует гидроксохромиты:

Cr(OH) 3 + 3 NaOH = Na 3

Соединения хрома(III) сильные восстановители.

Соединения хрома (IV ) – триоксид хрома (IV) – хромовый ангирид – кислотный оксид. При растворении его в воде образуются к-ты: H 2 CrO 4 хромовая к-та, H­ 2 Cr 2 O 7 двухромовая к-та

Соли – хроматы и дихроматы. Взаимные переходы хромата и дихромата можно выразить уравнением обратной реакции:

K 2 Cr 2 O 7 + 2 KOH = 2 K 2 CrO 4 + H 2 O

2 K 2 CrO 4 + H 2 SO 4 = K 2 Cr 2 O 7 + K 2 SO 4 + H 2 O

Хроматы и дихроматы сильные окислители. Соединения хрома(III) и хрома (IV) в кислых и щелочных растворах существуют в разных формах:

    в кислой среде – Сr 3+ ; Cr 2 O 7 2-

    в щелочной – 3- ; CrO 4 2-

Взаимное превращение протекают по разному в зависимости от реакции раствора:

    в кислой среде устанавливается равновесие:

    в щелочной среде

Т.е. окислительные свойства хрома 4 наиболее выражены в кислой среде,а восстановительные хрома 3 в щелочной. Поэтому окисление соединений хрома 3+ до хрома 6+ осуществляют в присутствии щелочи, а соединения хром 6+ применяют в качестве окислителей в кислых р-рах:

K 2 Cr 2 O 7 + 14 HCl = 2 CrCl 3 + 3 Cl 2 + 2 KCl + 7 H 2 O

Cr 2 (SO 4) 3 + 3 H 2 O 2 + 10 NaOH = 2 Na 2 CrO 4 + 3 Na 2 SO 4 + 8 H 2 O

Последние материалы раздела:

Кир II Великий - основатель Персидской империи
Кир II Великий - основатель Персидской империи

Основателем Персидской державы признается Кир II, которого за его деяния называют также Киром Великим. Приход к власти Кир II происходил из...

Длины световых волн. Длина волны. Красный цвет – нижняя граница видимого спектра Видимое излучение диапазон длин волн в метрах
Длины световых волн. Длина волны. Красный цвет – нижняя граница видимого спектра Видимое излучение диапазон длин волн в метрах

Соответствует какое-либо монохроматическое излучение . Такие оттенки, как розовый , бежевый или пурпурный образуются только в результате смешения...

Николай Некрасов — Дедушка: Стих
Николай Некрасов — Дедушка: Стих

Николай Алексеевич НекрасовГод написания: 1870Жанр произведения: поэмаГлавные герои: мальчик Саша и его дед-декабрист Очень коротко основную...