Абсолютный показатель преломления света. Как рассчитывается показатель преломления

Области применения рефрактометрии.

Устройство и принцип действия рефрактометра ИРФ-22.

Понятие показателя преломления.

План

Рефрактометрия. Характеристика и сущность метода.

Для идентификации веществ и проверки их чистоты используют пока-

затель преломления.

Показатель преломления вещества - величина, равная отношению фазовых скоростей света (электромагнитных волн) в вакууме и виданной среде.

Показатель преломления зависит от свойств вещества и длины волны

электромагнитного излучения. Отношение синуса угла падения относительно

нормали, проведенной к плоскости преломления (α) луча к синусу угла пре-

ломления (β) при переходе луча из среды A в среду B называется относи-тельным показателем преломления для этой пары сред.

Величина n есть относительный показатель преломления среды В по

отношению к среде А, а

Относительный показатель преломления среды А по отношению к

Показатель преломления луча, падающего на среду из безвоздушно-

го пространства, называется его абсолютным показателем преломления или

просто показателем преломления данной среды (таблица 1).

Таблица 1 - Показатели преломления различных сред

Жидкости имеют показатель преломления в интервале 1.2-1,9. Твердые

вещества 1,3-4,0. Некоторые минералы не имеют точного значения показате-

ля преломления. Его величина находится в некоторой «вилке» и определяет-

ся присутствием примесей в кристаллической структуре, что определяет цвет

кристалла.

Идентификация минерала по «цвету» затруднительна. Так, минерал корунд существует в виде рубина, сапфира, лейкосапфира, отличаясь по

показателю преломления и цвету. Красные корунды называются рубинами

(примесь хрома), синие бесцветные, голубые, розовые, желтые, зеленые,

фиолетовые - сапфирами (примеси кобальта, титана и др). Светлоокрашен-

ные сапфиры или бесцветный корунд носит название лейкосапфир (широко

применяется в оптике как светофильтр). Показатель преломления этих кри-

сталлов лежит в диапазоне 1,757-1,778 и является основанием для идентифи-

Рисунок 3.1 – Рубин Рисунок 3.2 - Сапфир синий

Органические и неорганические жидкости также имеют характерные значения показателей преломления, которые характеризуют их как химиче-

ские соединения и качество их синтеза (таблица 2):

Таблица 2 - Показатели преломления некоторых жидкостей при 20 °C

4.2. Рефрактометрия: понятие, принцип.

Метод исследования веществ, основанный на определении показателя



(коэффициента) преломления (рефракции) называется рефрактометрией (от

лат. refractus - преломленный и греч. metreo – измеряю). Рефрактометрия

(рефрактометрический метод) применяется для идентификации химических

соединений, количественного и структурного анализа, определения физико-

химических параметров веществ. Принцип рефрактометрии, реализованный

в рефрактометрах Аббе, поясняется рисунком 1.

Рисунок 1 - Принцип рефрактометрии

Призменный блок Аббе состоит из двух прямоугольных призм: освети-

тельной и измерительной, сложенных гипотенузными гранями. Осветитель-

ная призма имеет шероховатую (матовую) гипотенузную грань и предназна-

чена для освещения образца жидкости, помещаемого между призмами.

Рассеянный свет проходит плоскопараллельный слой исследуемой жидкости и, преломляясь в жидкости падает на измерительную призму. Измерительная призма выполнена из оптически плотного стекла (тяжелый флинт) и имеет показатель преломления больше 1,7. По этой причине рефрактометр Аббе измеряет величины n меньшие, чем 1,7. Увеличение диапазона измерения показателя преломления может быть достигнуто только путем замены измерительной призмы.

Исследуемый образец наливают на гипотенузную грань измеритель-ной призмы и прижимают осветительной призмой. При этом между призмами остается зазор 0,1-0,2 мм в котором находится образец, и через

который проходит преломляясь свет. Для измерения показателя преломления

используют явление полного внутреннего отражения. Оно заключается в

следующем.

Если на границу раздела двух сред падают лучи 1, 2, 3, то в зависимо-

сти от угла падения при наблюдении за ними в среде преломления будет на-

блюдаться наличие перехода областей различной освещенности. Оно связано

с падением некоторой части света на границу преломления под углом близ-

ким к 90° по отношению к нормали (луч 3). (Рисунок 2).

Рисунок 2 – Изображение преломляемых лучей

Эта часть лучей не отражается и поэтому образует более светлую об-

ласть при преломлении. Лучи с меньшими углами испытывают и отражение

и преломление. Поэтому образуется область меньшей освещенности. В объ-

ективе видна граничная линия полного внутреннего отражения, положение

которой зависит от преломляющих свойств образца.

Устранение явления дисперсии (окрашивания границы раздела двух областей освещенности в цвета радуги из-за использования в рефрактометрах Аббе сложного белого света) достигается использованием двух призм Амичи в компенсаторе, которые вмонтированы в зрительную трубу. Одновременно в объектив проецируется шкала (Рисунок 3). Для анализа достаточно 0,05 мл жидкости.

Рисунок 3 - Вид в окуляр рефрактометра. (Правая шкала отражает

концентрацию измеряемого компонента в промилле)

Помимо анализа однокомпонентных образцов широко анализируются

двухкомпонентные системы (водные растворы, растворы веществ в каком

либо растворителе). В идеальных двухкомпонентных системах (образующих-

ся без изменения объема и поляризуемости компонентов) зависимость пока-

зателя преломления от состава близка к линейной, если состав выражен в

объемных долях (процентах)

где: n, n1 ,n2 - показатели преломления смеси и компонентов,

V1 и V2 - объемные доли компонентов (V1 + V2 = 1).

Влияние температуры на показатель преломления определяется двумя

факторами: изменением количества частиц жидкости в единице объема и за-

висимостью поляризуемости молекул от температуры. Второй фактор стано-

вится существенным лишь при очень большом изменении температуры.

Температурный коэффициент показателя преломления пропорционален температурному коэффициенту плотности. Поскольку все жидкости при нагревании расширяются, то их показатели преломления уменьшаются при повышении температуры. Температурный коэффициент зависит от величины температуры жидкости, но в небольших температурных интервалах может считаться постоянным. По этой причине большая часть рефрактометров не имеет термостатирования, однако в некоторых конструкциях предусмотрено

водное термостатирование.

Линейная экстраполяция показателя преломления при изменении температуры допустима на небольшие разности температур (10 – 20°С).

Точное определение показателя преломления в широких температурных интервалах производится по эмпирическим формулам вида:

nt=n0+at+bt2+…

Для рефрактометрии растворов в широких диапазонах концентраций

пользуются таблицами или эмпирическими формулами. Зависимость показа-

теля преломления водных растворов некоторых веществ от концентрации

близка к линейной и позволяет определять концентрации данных веществ в

воде в широких диапазонах концентраций (рисунок 4) с помощью рефрак-

тометров.

Рисунок 4 - Показатель преломления некоторых водных растворов

Обычно n жидких и твердых тел рефрактометрами определяют с точ-

ностью до 0,0001. Наиболее распространены рефрактометры Аббе (рисунок 5) с призменными блоками и компенсаторами дисперсии, позволяющие определять nD в "белом" свете по шкале или цифровому индикатору.

Рисунок 5 - Рефрактометр Аббе (ИРФ-454; ИРФ-22)

Урок 25/III-1 Распространение света в различных средах. Преломление света на границе раздела двух сред.

    Изучение нового материала.

До сих пор мы рассматривали распространение света в одной среде, как обычно – в воздухе. Свет может распространяться в различных средах: переходить из одной среды в другую; в точках падения лучи не только отражаются от поверхности, но и частично проходят через нее. Такие переходы вызывают немало красивых и интересных явлений.

Изменение направления распространение света, проходящего через границу двух сред, называют преломлением света.

Частьсветового луча, падающего на границу раздела двух прозрачных сред, отражается, а часть переходит в другую среду. При этом направление светового луча, который перешел в другую среду, изменяется. Поэтому явление называется преломлением, а луч – преломленным.

1 – падающий луч

2 – отраженный луч

3 – преломленный луч α β

ОО 1 – граница раздела двух сред

MN - перпендикуляр О О 1

Угол, образованный лучом и перпендикуляром к границе раздела двух сред, опущенным в точку падения луча, называется углом преломления γ (гамма).

Свет в вакууме распространяется со скоростью 300000 км/с. В любой среде скорость света всегда меньше, чем в вакууме. Поэтому при переходе света из одной среды в другую, его скорость уменьшается и это является причиной преломления света. Чем меньше скорость распространения света в данной среде, тем большей оптической плотностью обладает данная среда. Так, например, воздух имеет больше оптическую плотность, чем вакуум, потому что в воздухе скорость света несколько меньше, чем в вакууме. Оптическая плотность воды больше, чем оптическая плотность воздуха, так как скорость света в воздухе больше, чем в воде.

Чем больше отличаются оптические плотности двух сред, тем больше преломляется свет на границе их раздела. Чем больше изменяется скорость света на границе раздела двух сред, тем сильнее оно преломляется.

Для каждого прозрачного вещества существует такая важная физическая характеристика, как показатель преломления света n. Он показывает, во сколько раз скорость света в данном веществе, меньше, чем в вакууме.

Показатель преломления света

Вещество

Вещество

Вещество

Каменная соль

Скипидар

Кедровое масло

Спирт этиловый

Глицерин

Плексиглас

Стекло (легкое)

Сероуглерод

Соотношение значений угла падения и угла преломления зависит от оптической плотности каждой из среды. Если луч света переходит из среды с меньшей оптической плотностью в среду с большей оптической плотностью, то угол преломления будет меньшим, чем угол падения. Если луч света переходит из среды с большей оптической плотностью, то угол преломления будет меньшим, чем угол падения. Если луч света переходит из среды с большей оптической плотностью в среду с меньшей оптической плотностью, то угол преломления больше, чем угол падения.

То есть, если n 1 γ; если n 1 >n 2 , то α<γ.

Закон преломления света :

    Луч падающий, луч преломленный и перпендикуляр к границе раздела двух сред в точке падения луча, лежат в одной плоскости.

    Соотношения угла падения и угла преломления определяются формулой.

где - синус угла падения,- синус кута преломления.

Значение синусов і тангенсов для углов 0 – 900

Градусы

Градусы

Градусы

Закон преломления света впервые сформулировал голландский астроном и математик В. Снелиус около 1626 г, профессор Лейденского университета (1613 г).

Для XVI столетия оптика была ультрасовременной наукой.Из стеклянного шара, наполненного водой, которым пользовались как линзой, возникло увеличительное стекло. А из него изобрели подзорную трубу и микроскоп. В то время Нидерландам нужны были подзорные трубы для рассматривания берега и своевременно убежать от врагов. Именно оптика обеспечила успех и надежность навигации. Поэтому в Нидерландах очень много ученых интересовались именно оптикой. Голландец Скель Ван Ройен (Снелиус) наблюдад, как тонкий луч света отражался в зеркале. Он измерял угол падения и угол отражения и установил: угол отражения равен углу падения. Ему же принадлежат законы отражения света. Он вывел закон преломления света.

Рассмотрим закон преломления света .

В ней - относительный показатель преломления второй среды относительно первой, в случае, когда второе имеет большую оптическую плотность. Если свет преломляется и проходит с среду с меньшей оптической плотностью, тогда α < γ, тогда

Если первой средой является вакуум, то n 1 =1 то .

Данный показатель называют абсолютным показателем преломления второй среды:

где - скорость света в вакууме, скорость света в данной среде.

Следствием преломления света в атмосфере Земли есть тот факт, что мы видим Солнце и звезды немного выше их реального положения. Преломлением света можно объяснить возникновение миражей, радуги… явление преломления света есть основой принципа работы численных оптических устройств: микроскопа, телескопа, фотоаппарата.

Преломления показатель

Показа́тель преломле́ния вещества - величина, равная отношению фазовых скоростей света (электромагнитных волн) в вакууме и в данной среде . Также о показателе преломления иногда говорят для любых других волн, например, звуковых, хотя в таких случаях, как последний, определение, конечно, приходится как-то модифицировать.

Показатель преломления зависит от свойств вещества и длины волны излучения, для некоторых веществ показатель преломления достаточно сильно меняется при изменении частоты электромагнитных волн от низких частот до оптических и далее, а также может еще более резко меняться в определенных областях частотной шкалы. По умолчанию обычно имеется в виду оптический диапазон или диапазон, определяемый контекстом.

Ссылки

  • RefractiveIndex.INFO база данных показателей преломления

Wikimedia Foundation . 2010 .

Смотреть что такое "Преломления показатель" в других словарях:

    Относительный двух сред n21, безразмерное отношение скоростей распространения оптического излучения (с в е т а) в первой (c1) и во второй (с2) средах: n21=с1/с2. В то же время относит. П. п. есть отношение синусов у г л а п а д е н и я j и у г л… … Физическая энциклопедия

    См. Показатель преломления …

    См. Показатель преломления. * * * ПРЕЛОМЛЕНИЯ ПОКАЗАТЕЛЬ ПРЕЛОМЛЕНИЯ ПОКАЗАТЕЛЬ, см. Показатель преломления (см. ПОКАЗАТЕЛЬ ПРЕЛОМЛЕНИЯ) … Энциклопедический словарь - ПОКАЗАТЕЛЬ ПРЕЛОМЛЕНИЯ, величина, характеризующая среду и равная отношению скорости света в вакууме к скорости света в среде (абсолютный показатель преломления). Показатель преломления n зависит от диэлектрической e и магнитной m проницаемостей… … Иллюстрированный энциклопедический словарь

    - (см. ПРЕЛОМЛЕНИЯ ПОКАЗАТЕЛЬ). Физический энциклопедический словарь. М.: Советская энциклопедия. Главный редактор А. М. Прохоров. 1983 … Физическая энциклопедия

    См. Преломления показатель … Большая советская энциклопедия

    Отношение скорости света в вакууме к скорости света в среде (абсолютный показатель преломления). Относительный показатель преломления 2 сред отношение скорости света в среде, из которой свет падает на границу раздела, к скорости света по второй… … Большой Энциклопедический словарь

Процессы, которые связаны со светом, являются важной составляющей физики и окружают нас в нашей обыденной жизни повсеместно. Самые важные в данной ситуации являются законы отражения и преломления света, на которых зиждется современная оптика. Преломление света является важной составляющей частью современной науки.

Эффект искажения

Эта статья расскажет вам, что собой представляет явление преломления света, а также как выглядит закон преломления и что из него вытекает.

Основы физического явления

При падении луча на поверхность, которая разделяется двумя прозрачными веществами, имеющими разную оптическую плотность (к примеру, разные стекла или в воде), часть лучей будет отражена, а часть – проникнет во вторую структуру (например, пойдет распространяться в воде или стекле). При переходе из одной среды в другую для луча характерно изменение своего направления. Это и есть явление преломления света.
Особенно хорошо отражение и преломление света видно в воде.

Эффект искажения в воде

Смотря на вещи, находящиеся в воде, они кажутся искаженными. Особенно это сильно заметно на границе между воздухом и водой. Визуально кажется, что подводные предметы слегка отклонены. В описываемом физическом явлении как раз и кроется причина того, что в воде все объекты кажутся искаженными. При попадании лучей на стекло, данный эффект менее заметен.
Преломление света представляет собой физическое явление, которое характеризуется изменением направления движения солнечного луча в момент перемещения из одной среды (структуры) в другую.
Для улучшения понимания данного процесса, рассмотрим пример попадания луча из воздуха в воду (аналогично для стекла). При проведении перпендикуляра вдоль границы раздела можно измерить угол преломления и возвращения светового луча. Данный показатель (угол преломления) будет изменяться при проникновении потока в воду (внутрь стекла).
Обратите внимание! Под данным параметром понимается угол, который образует перпендикуляр, проведенный к разделу двух веществ при проникновении луча из первой структуры во вторую.

Прохождение луча

Этот же показатель характерен и для других сред. Установлено, что данный показатель зависит от плотности вещества. Если падение луча происходит из менее плотной в более плотную структуру, то угол создаваемого искажения будет больше. А если наоборот – то меньше.
При этом изменение наклона падения также скажется и на данном показателе. Но отношение между ними не остается постоянным. В то же время, отношение их синусов останется постоянной величиной, которую отображает следующая формула: sinα / sinγ = n, где:

  • n – постоянная величина, которая описана для каждого конкретного вещества (воздуха, стекла, воды и т.д.). Поэтому, какова будет данная величина можно определить по специальным таблицам;
  • α – угол падения;
  • γ – угол преломления.

Для определения этого физического явления и был создан закон преломления.

Физический закон

Закон преломления световых потоков позволяет определить характеристики прозрачных веществ. Сам закон состоит из двух положений:

  • первая часть. Луч (падающий, измененный) и перпендикуляр, который был восстановлен в точке падения на границе, например, воздуха и воды (стекла и т.д.), будут располагаться в одной плоскости;
  • вторая часть. Показатель соотношения синуса угла падения к синусу этого же угла, образовавшегося при переходе границы, будет величиной постоянной.

Описание закона

При этом в момент выхода луча из второй структуры в первую (например, при прохождении светового потока из воздуха, через стекло и обратно в воздух), также будет возникать эффект искажения.

Важный параметр для разных объектов

Основной показатель в данной ситуации — это соотношение синуса угла падения к аналогичному параметру, но для искажения. Как следует из закона, описанного выше, данный показатель являет собой постоянную величину.
При этом при изменении значения наклона падения, такая же ситуация будет характерна и для аналогичного показателя. Данный параметр имеет большое значение, поскольку является неотъемлемой характеристикой прозрачных веществ.

Показатели для разных объектов

Благодаря этому параметру можно довольно эффективно различать виды стекол, а также разнообразные драгоценные камни. Также он важен для определения скорости перемещения света в различных средах.

Обратите внимание! Наивысшая скорость светового потока – в вакууме.

При переходе из одного вещества в другие, его скорость будет уменьшаться. К примеру, у алмаза, который обладает самым большим показателем преломляемости, скорость распространения фотонов будет в 2,42 раза выше, чем у воздуха. В воде же они будут распространяться медленнее в 1,33 раза. Для разных видов стекол данный параметр колеблется в диапазоне от 1,4 до 2,2.

Обратите внимание! Некоторые стекла имеют показатель преломляемости 2,2, что очень близко к алмазу (2,4). Поэтому не всегда получится отличить стекляшку от реального алмаза.

Оптическая плотность веществ

Свет может проникать через разные вещества, которые характеризуются различными показателями оптической плотности. Как мы уже говорили ранее, используя данный закон можно определить характеристику плотности среды (структуры). Чем более плотной она будет, тем с меньшей скоростью в ней будет распространяться свет. Например, стекло или вода будут более оптически плотными, чем воздух.
Кроме того, что данный параметр является постоянной величиной, он еще и отражает отношение скорости света в двух веществах. Физический смысл можно отобразить в виде следующей формулы:

Данный показатель говорит, каким образом изменяется скорость распространения фотонов при переходе из одного вещества в другое.

Еще один важный показатель

При перемещении светового потока через прозрачные объекты возможна его поляризация. Она наблюдается при прохождении светового потока от диэлектрических изотропных сред. Поляризация возникает при прохождении фотонов через стекло.

Эффект поляризации

Частичная поляризация наблюдается, когда угол падения светового потока на границе двух диэлектриков будет отличаться от нуля. Степень поляризации зависит от того, каковы были углы падения (закон Брюстера).

Полноценное внутреннее отражение

Завершая наш небольшой экскурс, еще необходимо рассмотреть такой эффект, как полноценное внутреннее отражение.

Явление полноценного отображения

Для появления данного эффекта необходимо увеличение угла падения светового потока в момент его перехода из более плотного в менее плотную среду в границе раздела между веществами. В ситуации, когда данный параметр будет превосходить определенное предельное значение, тогда фотоны, падающие на границу этого раздела будут полностью отражаться. Собственно это и будет наше искомое явление. Без него невозможно было сделать волоконную оптику.

Заключение

Практическое применение особенностей поведения светового потока дали очень многое, создав разнообразные технические приспособления для улучшения нашей жизни. При этом свет открыл перед человечеством далеко не все свои возможности и его практический потенциал еще полностью не реализован.

Как сделать бумажный светильник своими руками Как проверить работоспособность светодиодной ленты

Обратимся к более подробному рассмотрению показателя преломления, введенного нами в §81 при формулировке закона преломления.

Показатель преломления зависит от оптических свойств и той среды, из которой луч падает, и той среды, в которую он проникает. Показатель преломления, полученный в том случае, когда свет из вакуума падает на какую-либо среду, называется абсолютным показателем преломления данной среды.

Рис. 184. Относительный показатель преломления двух сред:

Пусть абсолютный показатель преломления первой среды есть а второй среды - . Рассматривая преломление на границе первой и второй сред, убедимся, что показатель преломления при переходе из первой среды во вторую, так называемый относительный показатель преломления, равен отношению абсолютных показателей преломления второй и первой сред:

(рис. 184). Наоборот, при переходе из второй среды в первую имеем относительный показатель преломления

Установленная связь между относительным показателем преломления двух сред и их абсолютными показателями преломления могла бы быть выведена и теоретическим путем, без новых опытов, подобно тому, как это можно сделать для закона обратимости (§82),

Среда, обладающая большим показателем преломления, называется оптически более плотной. Обычно измеряется показатель преломления различных сред относительно воздуха. Абсолютный показатель преломления воздуха равен . Таким образом, абсолютный показатель преломления какой-либо среды связан с ее показателем преломления относительно воздуха формулой

Таблица 6. Показатель преломления различных веществ относительно воздуха

Жидкости

Твердые вещества

Вещество

Вещество

Спирт этиловый

Сероуглерод

Глицерин

Стекло (легкий крон)

Жидкий водород

Стекло (тяжелый флинт)

Жидкий гелий

Показатель преломления зависит от длины волны света, т. е. от его цвета. Различным цветам соответствуют различные показатели преломления. Это явление, называемое дисперсией, играет важную роль в оптике. Мы неоднократно будем иметь дело с этим явлением в последующих главах. Данные, приведенные в табл. 6, относятся к желтому свету.

Интересно отметить, что закон отражения может быть формально записан в том же виде, что и закон преломления. Вспомним, что мы условились всегда измерять углы от перпендикуляра к соответствующему лучу. Следовательно, мы должны считать угол падения и угол отражения имеющими противоположные знаки, т.е. закон отражения можно записать в виде

Сравнивая (83.4) с законом преломления, мы видим, что закон отражения можно рассматривать как частный случай закона преломления при . Это формальное сходство законов отражения и преломления приносит большую пользу при решении практических задач.

В предыдущем изложении показатель преломления имел смысл константы среды, не зависящей от интенсивности проходящего через нее света. Такое истолкование показателя преломления вполне естественно, однако в случае больших интенсивностей излучения, достижимых при использовании современных лазеров, оно не оправдывается. Свойства среды, через которую проходит сильное световое излучение, в этом случае зависят от его интенсивности. Как говорят, среда становится нелинейной. Нелинейность среды проявляется, в частности, в том, что световая волна большой интенсивности изменяет показатель преломления. Зависимость показателя преломления от интенсивности излучения имеет вид

Здесь - обычный показатель преломления, а - нелинейный показатель преломления, - множитель пропорциональности. Добавочный член в этой формуле может быть как положительным, так и отрицательным.

Относительные изменения показателя преломления сравнительно невелики. При нелинейный показатель преломления . Однако даже такие небольшие изменения показателя преломления ощутимы: они проявляются в своеобразном явлении самофокусировки света.

Рассмотрим среду с положительным нелинейным показателем преломления. В этом случае области повышенной интенсивности света являются одновременной областями увеличенного показателя преломления. Обычно в реальном лазерном излучении распределение интенсивности по сечению пучка лучей неоднородно: интенсивность максимальна по оси и плавно спадает к краям пучка, как это показано на рис. 185 сплошными кривыми. Подобное распределение описывает также изменение показателя преломления по сечению кюветы с нелинейной средой, вдоль оси которой распространяется лазерный луч. Показатель преломления, наибольший по оси кюветы, плавно спадает к ее стенкам (штриховые кривые на рис. 185).

Пучок лучей, выходящий из лазера параллельно оси, попадая в среду с переменным показателем преломления , отклоняется в ту сторону, где больше. Поэтому повышенная интенсивность вблизи осп кюветы приводит к концентрации световых лучей в этой области, показанной схематически в сечениях и на рис. 185, а это приводит к дальнейшему возрастанию . В конечном итоге эффективное сечение светового пучка, проходящего через нелинейную среду, существенно уменьшается. Свет проходит как бы по узкому каналу с повышенным показателем преломления. Таким образом, лазерный пучок лучей сужается, нелинейная среда под действием интенсивного излучения действует как собирающая линза. Это явление носит название самофокусировки. Его можно наблюдать, например, в жидком нитробензоле.

Рис. 185. Распределение интенсивности излучения и показателя преломления по сечению лазерного пучка лучей на входе в кювету (а), вблизи входного торца (), в середине (), вблизи выходного торца кюветы ()

Последние материалы раздела:

Реферат: Школьный тур олимпиады по литературе Задания
Реферат: Школьный тур олимпиады по литературе Задания

Посвящается Я. П. Полонскому У широкой степной дороги, называемой большим шляхом, ночевала отара овец. Стерегли ее два пастуха. Один, старик лет...

Самые длинные романы в истории литературы Самое длинное литературное произведение в мире
Самые длинные романы в истории литературы Самое длинное литературное произведение в мире

Книга длинной в 1856 метровЗадаваясь вопросом, какая книга самая длинная, мы подразумеваем в первую очередь длину слова, а не физическую длину....

Кир II Великий - основатель Персидской империи
Кир II Великий - основатель Персидской империи

Основателем Персидской державы признается Кир II, которого за его деяния называют также Киром Великим. Приход к власти Кир II происходил из...