А о биология. Биология как наука и ее методы

В частности, структуру, функционирование, рост, происхождение, эволюцию и распределение живых организмов на Земле . Классифицирует и описывает живые существа, происхождение их видов , взаимодействие между собой и с окружающей средой .

Как особая наука биология выделилась из естественных наук в XIX веке , когда учёные обнаружили, что все живые организмы обладают некоторыми общими свойствами и признаками, в совокупности не характерными для неживой природы. Термин «биология» был введён независимо несколькими авторами: Фридрихом Бурдахом в 1800 году, Готфридом Рейнхольдом Тревиранусом в 1802 году и Жаном Батистом Ламарком в 1802 году.

Биологическая картина мира

В настоящее время биология - стандартный предмет в средних и высших учебных заведениях всего мира. Ежегодно публикуется более миллиона статей и книг по биологии, медицине , биомедицине и биоинженерии .

  • Клеточная теория - учение обо всём, что касается клеток . Все живые организмы состоят как минимум из одной клетки - основной структурно-функциональной единицы организмов. Базовые механизмы и химия всех клеток во всех земных организмах сходны; клетки происходят только от ранее существовавших клеток, которые размножаются путём клеточного деления. Клеточная теория описывает строение клеток, их деление, взаимодействие с внешней средой, состав внутренней среды и клеточной оболочки, механизм действия отдельных частей клетки и их взаимодействия между собой.
  • Эволюция . Через естественный отбор и генетический дрейф наследственные признаки популяции изменяются из поколения в поколение.
  • Теория гена . Признаки живых организмов передаются из поколения в поколение вместе с генами , которые закодированы в ДНК . Информация о строении живых существ или генотип используется клетками для создания фенотипа , наблюдаемых физических или биохимических характеристик организма. Хотя фенотип, проявляющийся за счёт экспрессии генов, может подготовить организм к жизни в окружающей его среде, информация о среде не передаётся назад в гены. Гены могут изменяться в ответ на воздействия среды только посредством эволюционного процесса.
  • Гомеостаз . Физиологические процессы, позволяющие организму поддерживать постоянство своей внутренней среды независимо от изменений во внешней среде.
  • Энергия . Атрибут любого живого организма, существенный для его состояния.

Клеточная теория

Эволюция

Центральная организующая концепция в биологии состоит в том, что жизнь со временем изменяется и развивается посредством эволюции , и что все известные формы жизни на Земле имеют общее происхождение. Это обусловило сходство основных единиц и процессов жизнедеятельности, упоминавшихся выше. Понятие эволюции было введено в научный лексикон Жаном-Батистом Ламарком в 1809 году. Чарльз Дарвин через пятьдесят лет установил, что её движущей силой является естественный отбор , так же как искусственный отбор сознательно применяется человеком для создания новых пород животных и сортов растений . Позже в синтетической теории эволюции дополнительным механизмом эволюционных изменений был постулирован генетический дрейф .

Теория гена

Форма и функции биологических объектов воспроизводятся из поколения в поколение генами , которые являются элементарными единицами наследственности. Физиологическая адаптация к окружающей среде не может быть закодирована в генах и быть унаследованной в потомстве (см. Ламаркизм). Примечательно, что все существующие формы земной жизни, в том числе, бактерии, растения, животные и грибы, имеют одни и те же основные механизмы, предназначенные для копирования ДНК и синтеза белка. Например, бактерии, в которые вводят ДНК человека, способны синтезировать человеческие белки.

Совокупность генов организма или клетки называется генотипом . Гены хранятся в одной или нескольких хромосомах. Хромосома - длинная цепочка ДНК, на которой может быть множество генов. Если ген активен, то последовательность его ДНК копируется в последовательности РНК посредством транскрипции . Затем рибосома может использовать РНК, чтобы синтезировать последовательность белка , соответствующую коду РНК, в процессе, именуемом трансляция . Белки могут выполнять каталитическую (ферментативную) функцию, транспортную, рецепторную , защитную, структурную, двигательную функции.

Гомеостаз

Гомеостаз - способность открытых систем регулировать свою внутреннюю среду так, чтобы поддерживать её постоянство посредством множества корректирующих воздействий, направляемых регуляторными механизмами. Все живые существа, как многоклеточные, так и одноклеточные, способны поддерживать гомеостаз . На клеточном уровне, например, поддерживается постоянная кислотность внутренней среды (). На уровне организма у теплокровных животных поддерживается постоянная температура тела. В ассоциации с термином экосистема под гомеостазом понимают, в частности, поддержание растениями и водорослями постоянной концентрации атмосферного кислорода и диоксида углерода на Земле.

Энергия

Выживание любого организма зависит от постоянного притока энергии. Энергия черпается из веществ, которые служат пищей, и посредством специальных химических реакций используется для построения и поддержания структуры и функционирования клеток. В этом процессе молекулы пищи используются как для извлечения энергии , так и для синтеза биологических молекул собственного организма.

Первичным источником энергии для подавляющего большинства земных существ является световая энергия, главным образом солнечная , однако некоторые бактерии и археи получают энергию посредством хемосинтеза . Световая энергия посредством фотосинтеза превращается растениями в химическую (органические молекулы) в присутствии воды и некоторых минералов. Часть полученной энергии затрачивается на наращивание биомассы и поддержание жизни, другая часть теряется в виде тепла и отходов жизнедеятельности. Общие механизмы превращения химической энергии в полезную для поддержания жизни называются дыхание и метаболизм .

Уровни организации жизни

Живые организмы представляют собой высокоорганизованные структуры, поэтому в биологии выделяют ряд уровней организации. В различных источниках некоторые уровни опускаются или совмещаются друг с другом. Ниже представлены основные уровни организации живой природы обособленно друг от друга.

  • Молекулярный - уровень взаимодействия молекул , составляющих клетки и обуславливающих все её процессы.
  • Клеточный - уровень, на котором рассматриваются клетки как элементарные единицы строения живого.
  • Тканевой - уровень совокупностей сходных по строению и функциям клеток, образующих ткани .
  • Органный - уровень отдельных органов , обладающих собственным строением (объединением типов тканей) и местоположением в организме.
  • Организменный - уровень отдельного организма .
  • Популяционно-видовой уровень - уровень популяции, составляемой совокупностью особей одного вида .
  • Биогеоценотический - уровень взаимодействия видов между собой и с различными факторами окружающей среды.
  • Биосферный уровень - совокупность всех биогеоценозов , включающих и обуславливающих все явления жизни на Земле.

Видео по теме

Биологические науки

Большинство биологических наук является дисциплинами с более узкой специализацией. Традиционно они группируются по типам исследуемых организмов:

  • ботаника изучает растения , водоросли , грибы и грибоподобные организмы ,
  • зоология - животных и протистов ,
  • микробиология - микроорганизмы и вирусы .
  • биохимия изучает химические основы жизни,
  • биофизика изучает физические основы жизни,
  • молекулярная биология - сложные взаимодействия между биологическими молекулами,
  • клеточная биология и цитология - основные строительные блоки многоклеточных организмов, клетки,
  • гистология и анатомия - строение тканей и организма из отдельных органов и тканей,
  • физиология - физические и химические функции органов и тканей,
  • этология - поведение живых существ,
  • экология - взаимозависимость различных организмов и их среды,
  • генетика - закономерности наследственности и изменчивости ,
  • биология развития - развитие организма в онтогенезе ,
  • палеобиология и эволюционная биология - зарождение и историческое развитие живой природы.

На границах со смежными науками возникают: биомедицина , биофизика (изучение живых объектов физическими методами), биометрия и т. д. В связи с практическими потребностями человека возникают такие направления, как космическая биология , социобиология , физиология труда , бионика .

Биологические дисциплины

История биологии

Хотя концепция биологии как особой естественной науки возникла в XIX веке , биологические дисциплины зародились ранее в медицине и естественной истории . Обычно их традицию ведут от таких античных учёных, как Аристотель и Гален через арабских медиков аль-Джахиза , ибн-Сину , ибн-Зухра и ибн-аль-Нафиза . В эпоху Возрождения биологическая мысль в Европе была революционизирована благодаря изобретению книгопечатания и распространению печатных трудов, интересу к экспериментальным исследованиям и открытию множества новых видов животных и растений в эпоху Великих географических открытий . В это время работали выдающиеся умы Андрей Везалий и Уильям Гарвей , которые заложили основы современной анатомии и физиологии . Несколько позже Линней и Бюффон совершили огромную работу по классификации форм живых и ископаемых существ. Микроскопия открыла для наблюдения ранее неведомый мир микроорганизмов, заложив основу для развития клеточной теории . Развитие естествознания, отчасти благодаря появлению механистической философии , способствовало развитию естественной истории .

К началу XIX века некоторые современные биологические дисциплины, такие как ботаника и зоология , достигли профессионального уровня. Лавуазье и другие химики и физики начали сближение представлений о живой и неживой природе. Натуралисты, такие как Александр Гумбольдт , исследовали взаимодействие организмов с окружающей средой и его зависимость от географии, закладывая основы биогеографии , экологии и этологии . В XIX веке развитие учения об эволюции постепенно привело к пониманию роли вымирания и изменчивости видов , а клеточная теория показала в новом свете основы строения живого вещества. В сочетании с данными эмбриологии и палеонтологии эти достижения позволили Чарльзу Дарвину создать целостную теорию эволюции, в основе которой лежит естественный отбор . К концу XIX века идеи самозарождения окончательно уступили место теории инфекционного агента как возбудителя заболеваний. Но механизм наследования родительских признаков всё ещё оставался тайной .

Популяризация биологии

См. также

Основными структурными элементами, из которых состоят тела живых существ, являются клетки. Их строение, состав и функции изучает цитология. Другая биологическая наука, гистология, имеет дело со свойствами и структурой тканей, т.е. групп однотипных клеток, выполняющих в организме сходную функцию. Механизмы, посредством которых признаки, свойственные особям одного поколения, передаются следующим поколениям, исследует генетика. Классификацией животных и растений и установлением их родственных связей занимается таксономия, а изучением ископаемых остатков живых существ – палеонтология. Взаимоотношения организмов с окружающей средой составляют предмет экологии.

Новейшие физические и химические методы исследования позволяют количественно изучать молекулярные структуры и явления, лежащие в основе всех биологических процессов. Данное направление, затрагивающее сразу несколько биологических дисциплин, называют молекулярной биологией.

БИОЛОГИЧЕСКИЕ КОНЦЕПЦИИ

Вплоть до начала 20 в. биологи были убеждены в том, что все живое принципиально отличается от неживого и в этом отличии есть какая-то тайна. В настоящее время благодаря значительно возросшему объему знаний в области химии и физики живой материи стало ясно, что жизнь может быть объяснена в обычных понятиях химии и физики. Ниже кратко излагаются основные концепции современной биологии, касающиеся самого феномена жизни.

Биогенез.

Все живые организмы происходят только от других живых организмов, и из этого правила нет исключений. Не совсем ясно, можно ли считать живыми субмикроскопические фильтрующиеся вирусы, но нет сомнений в том, что появление их в большом количестве в среде возможно только за счет размножения тех вирусов, которые уже попали туда раньше. Из невирусного вещества вирусы не возникают.

Клеточная теория.

Одно из наиболее фундаментальных обобщений современной биологии – это клеточная теория, согласно которой все живые существа, включая растения и животных, состоят из клеток и продуктов выделения клеток, а новые клетки образуются путем деления существующих. Все клетки демонстрируют также сходство в основных компонентах химического состава и в основных метаболических реакциях, а активность всего организма представляет собой сумму индивидуальных активностей составляющих этот организм клеток и результатов их взаимодействия.

Генетические механизмы и эволюция.

Генетическая теория гласит, что признаки особей каждого поколения передаются следующему поколению через единицы наследственности, называемые генами. Крупные сложные молекулы ДНК состоят из четырех типов субъединиц, называемых нуклеотидами, и имеют структуру двойной спирали. Информация, содержащаяся в каждом гене, закодирована особым порядком расположения этих субъединиц. Поскольку каждый ген состоит примерно из 10 000 нуклеотидов, выстроенных в определенной последовательности, существует великое множество комбинаций нуклеотидов, а соответственно и множество различных последовательностей, являющихся единицами генетической информации.

Определение последовательности нуклеотидов, образующих определенный ген, стало теперь не только возможным, но даже довольно обычным делом. Более того, ген можно синтезировать, а затем клонировать, получив таким образом миллионы копий. Если какое-то заболевание человека вызвано мутацией гена, который в результате не функционирует надлежащим образом, в клетку может быть введен нормальный синтезированный ген, и он будет выполнять необходимую функцию. Эта процедура называется генной терапией. Грандиозный проект «Геном человека» призван выяснить нуклеотидные последовательности, образующие все гены человеческого генома.

Одно из важнейших обобщений современной биологии, формулируемое иногда как правило «один ген – один фермент – одна метаболическая реакция», было выдвинуто в 1941 американскими генетиками Дж.Бидлом и Э.Тейтемом. Согласно этой гипотезе, любая биохимическая реакция – как в развивающемся, так и в зрелом организме – контролируется определенным ферментом, а фермент этот в свою очередь контролируется одним геном. Информация, заложенная в каждом гене, передается от одного поколения другому специальным генетическим кодом, который определяется линейной последовательностью нуклеотидов. При образовании новых клеток каждый ген реплицируется, и в процессе деления каждая из дочерних клеток получает точную копию всего кода. В каждом поколении клеток происходит транскрипция генетического кода, что позволяет использовать наследственную информацию для регуляции синтеза специфических ферментов и других белков, существующих в клетках.

В 1953 американский биолог Дж.Уотсон и британский биохимик Ф.Крик сформулировали теорию, объясняющую, каким образом структура молекулы ДНК обеспечивает основные свойства генов – способность к репликации, к передаче информации и мутированию. На основании этой теории оказалось возможным сделать определенные предсказания о генетической регуляции синтеза белка и подтвердить их экспериментально.

Развитие с середины 1970-х годов генной инженерии, т.е. технологии получения рекомбинантных ДНК, значительно изменило характер исследований, проводимых в области генетики, биологии развития и эволюции. Разработка методов клонирования ДНК и проведения полимеразной цепной реакции позволяют получать в достаточном количестве необходимый генетический материал, включая рекомбинантные (гибридные) ДНК. Эти методы используются для выяснения тонкой структуры генетического аппарата и отношений между генами и их специфическими продуктами – полипептидами. Вводя в клетки рекомбинантную ДНК, удалось получить штаммы бактерий, способные синтезировать важные для медицины белки, например человеческий инсулин, гормон роста человека и многие другие соединения.

Значительный прогресс был достигнут в области изучения генетики человека. В частности, проведены исследования таких наследственных болезней, как серповидноклеточная анемия и муковисцидоз. Изучение раковых клеток привело к открытию онкогенов, превращающих нормальные клетки в злокачественные. Исследования, проводимые на вирусах, бактериях, дрожжах, плодовых мушках и мышах, позволили получить обширную информацию, касающуюся молекулярных механизмов наследственности. Теперь гены одних организмов могут быть перенесены в клетки других высокоразвитых организмов, например мышей, которые после такой процедуры называются трансгенными. Чтобы осуществить операцию по внедрению чужеродных генов в генетический аппарат млекопитающих, разработан целый ряд специальных методов.

Одно из наиболее удивительных открытий в генетике – это обнаружение двух типов входящих в состав генов полинуклеотидов: интронов и экзонов. Генетическая информация кодируется и передается только экзонами, функции же интронов до конца не выяснены.

Витамины и коферменты.

Открытие этих веществ, которые не являются солями, белками, жирами или углеводами, но вместе с тем необходимы для полноценного питания, принадлежит американскому биохимику польского происхождения К.Функу. С 1912, когда Функ обнаружил витамины, началось интенсивное исследование их роли в метаболизме и выяснение того, почему в пищевом рационе одних организмов должны обязательно присутствовать определенные витамины, а в рационе других их может и не быть. Сейчас твердо установлено, что соединения, которые мы относим к витаминам, необходимы для нормального метаболизма всех живых существ, включая бактерии, зеленые растения и животных, однако, если некоторые организмы способны синтезировать эти соединения сами, другие должны получать их с пищей в готовом виде. Для многих витаминов в настоящее время уже выяснена их специфическая роль в метаболизме. Во всех случаях они функционируют как часть большой молекулы вещества, названного коферментом. Кофермент служит своего рода партнером фермента и субстратом для осуществления некоторых реакций. Авитаминоз, возникающий при недостаточности того или иного витамина, есть следствие нарушений в метаболизме, вызванных нехваткой кофермента.

Гормоны.

Термин «гормон» был предложен в 1905 английским физиологом Э.Старлингом, который определил его как «любое вещество, в норме выделяемое клетками в какой-то одной части тела и переносимое кровью в другие части тела, где оно проявляет свое действие во благо всего организма». Можно сказать, что эндокринология (изучение гормонов) началась с 1849, когда немецкий физиолог А.Бертольд осуществил пересадку семенников от одной птицы к другой и предположил, что эти мужские половые железы выделяют в кровь какое-то вещество, определяющее развитие вторичных половых признаков. Само же это вещество – тестостерон – было выделено в чистом виде и описано только в 1935.

Животные (как позвоночные, так и беспозвоночные) и растения вырабатывают большое число разных гормонов. Все гормоны образуются в каком-то небольшом участке организма, а потом переносятся в другие его части, где, присутствуя в очень низких концентрациях, оказывают исключительно важное регуляторное и координирующее действие на активность клеток. Таким образом, основная роль гормонов – это химическая координация, дополняющая координацию, осуществляемую нервной системой.

Экология.

Согласно одной из важнейших обобщающих концепций современной биологии, все живые организмы, обитающие в определенном месте, тесно взаимодействуют друг с другом и с окружающей средой. Определенные виды растений и животных распределены в пространстве не случайным образом, а образуют взаимозависимые сообщества, состоящие из продуцентов, консументов и редуцентов и связанные с определенными неживыми компонентами среды. Подобные сообщества могут быть выявлены и охарактеризованы по доминирующим видам; чаще всего это виды растений, дающие пищу и укрытие другим организмам. Экология призвана ответить на вопросы – почему те или иные виды растений и животных образуют определенное сообщество, как они взаимодействуют между собой и как влияет на них человеческая деятельность.

Особенности живых организмов.

Живые организмы не содержат какого-либо особого химического элемента, которого не было бы в неживой природе. Наоборот, основные составляющие их элементы – углерод, водород, кислород и азот – довольно широко распространены на Земле. В очень небольших количествах в составе живых организмов присутствует, кроме того, множество других химических элементов. Все живые существа в большей или меньшей степени могут быть охарактеризованы по таким признакам, как размеры, форма тела, раздражимость, подвижность, а также особенности метаболизма, роста, размножения и адаптаций. Способность растений и животных приспосабливаться к своей среде позволяет им выживать при тех изменениях, которые происходят во внешнем мире. Адаптация может включать как очень быстрые изменения состояния организма, определяемые клеточной раздражимостью, так и очень длительные процессы, а именно появление мутаций и их естественный отбор.

Биологические ритмы.

Многие проявления жизнедеятельности организмов имеют циклический характер. Существуют, например, сезонные циклы в динамике численности некоторых видов; известны также циклические явления в жизни популяций, повторяющиеся каждый год, каждый лунный месяц, каждый день или каждый морской прилив (или отлив). Многие биологические функции отдельно взятого организма тоже имеют периодическую природу, например, чередование сна и бодрствования. По крайней мере некоторые из этих циклов, по-видимому, регулируются внутренними биологическими часами.

Происхождение жизни.

Современные теории возникновения мутаций, естественного отбора и популяционной динамики дают объяснение того, как произошли современные животные и растения от ранее существовавших форм. Вопрос о первоначальном происхождении жизни на Земле рассматривался многими биологами. Некоторые из них считали, что формы жизни были принесены из космоса, с других планет. Сторонники подобной точки зрения ссылаются на обнаруженные в 1961 и 1966 структуры в метеоритах, напоминающие окаменелости микроскопических организмов.

Теорию происхождения первых живых существ из неживой материи развивали немецкий физиолог Э.Пфлюгер, английский генетик Дж.Холдейн и русский биохимик А.И.Опарин.

Известен целый ряд реакций, посредством которых можно получить органические вещества из неорганических. Американский химик М.Калвин экспериментально показал, что излучение с высокой энергией, например космические лучи или электрические разряды, могут способствовать образованию органических соединений из простых неорганических компонентов. В 1953 американские химики Г.Юри и С.Миллер обнаружили, что некоторые аминокислоты, например глицин и аланин, и даже более сложные вещества могут быть получены из смеси паров воды, метана, аммиака и водорода, через которую всего лишь в течение недели пропускают электрические разряды.

Спонтанное зарождение живых организмов в той обстановке, которая существует на Земле в настоящее время, в высшей степени маловероятно, однако оно вполне могло произойти в прошлом. Все дело в различии условий, существовавших тогда и сейчас.

До того, как на Земле возникла жизнь, органические соединения могли накапливаться, поскольку, во-первых, не существовало плесневых грибов, бактерий и других живых существ, способных их потреблять, а во-вторых, они не подвергались спонтанному окислению, так как в атмосфере тогда отсутствовал кислород (или его было очень мало). Сейчас разработаны вполне правдоподобные теории, позволяющие объяснить, как органические вещества могли возникать в результате простых химических реакций, индуцированных электрическими разрядами, ультрафиолетовым излучением и другими физическими факторами, как эти молекулы могли затем образовать в море разбавленный бульон и как в результате их длительного взаимодействия формировались жидкие кристаллы, а затем и более сложные молекулы, по размерам приближающиеся к белкам и нуклеиновым кислотам . Процесс, аналогичный естественному отбору, мог действовать уже среди этих еще не живых, но уже очень сложных молекул. Дальнейшее объединение молекул белков и нуклеиновых кислот могло привести к появлению организмов, напоминающих ныне существующие вирусы, от которых, возможно, произошли бактерии, давшие в конце концов начало растениям и животным. Другим крупным шагом в ранней эволюции было развитие белково-липидной мембраны, которая окружала скопление молекул и позволяла одни молекулы накапливать, а другие, наоборот, выбрасывать наружу.

Все эти доводы привели ученых к заключению, что возникновение жизни на нашей планете – это событие не только вполне естественное и возможное, но и почти неизбежное. Более того, количество уже известных галактик, а соответственно и планет во Вселенной столь велико, что существование на многих из них условий, пригодных для жизни, представляется весьма вероятным. Не исключено, что жизнь на этих планетах действительно существует. Но если жизнь где-то возможна, то по прошествии достаточного времени она должна появиться и дать широкое разнообразие форм. Некоторые из этих форм могут сильно отличаться от тех, что встречаются на Земле, но другие могут быть очень похожими. Теория происхождения жизни может быть сведена к следующим тезисам: 1) органические вещества образуются из неорганических в результате воздействия физических факторов окружающей среды; 2) органические вещества взаимодействуют друг с другом, образуя все более сложные комплексы, из которых постепенно формируются ферменты и самовоспроизводящиеся системы, напоминающие гены; 3) сложные молекулы становятся более разнообразными и объединяются в примитивные, похожие на вирусы организмы; 4) вирусоподобные организмы постепенно эволюционируют и дают начало растениям и животным.

Человек на протяжении всего своего существования на Земле изучает разнообразие растительного и животного мира. Биологические науки, список которых постоянно пополняется, имеют большое значение для формирования современной естественнонаучной картины мира. Методы и подходы со временем совершенствуются, позволяя раскрывать многочисленные природные секреты.

Вконтакте

Появление термина

В основе термина лежат два греческих слова: bios – жизнь, logos – наука, учение. Кто ввел этот термин. Понятие биология означает совокупность наук о живой природе, раскрывает сущность жизни. Его предложили два видных ученых Г. Тревинарус и Ж.-Б. Лемарк еще в начале 19 века. Спустя два столетия наука продолжает активно развиваться, ученые уже достаточно далеко продвинулась в своих исследованиях.

Главные научные направления

Сегодня существуют многочисленные биологические дисциплины и отрасли , направленные на изучение живых существ, начиная от амебы с инфузорией и заканчивая человеческим организмом. Жизнь – основной предмет исследования. Разнообразие ее проявлений, влияние на окружающие процессы и явления, организация на всех уровнях и сегментах, входят в число объектов.

Назовем основные биологические дисциплины и подробно расскажем о некоторых из них:

  • общая биология,
  • системная,
  • вирусология,
  • микрология,
  • микробиология,
  • генетика,
  • анатомия,
  • этология,
  • цитология,
  • биология развития,
  • палеонтология и прочие.

Важно знать, какая наука изучает строение и функции , является одной из основных дисциплин. Ее название — цитология . Предметом изучения являются все процессы, происходящие с клеткой: рождение, жизнедеятельность, размножение, питание, старение и гибель.

Биологические дисциплины

Любые проявления жизни становятся предметом изучения для биологов. К ним относят:

  • распределение по территории,
  • строение,
  • происхождение,
  • функции,
  • развитие видов,
  • связи с другими живыми существами и предметами .

Важно! Задача биологии – раскрыть и изучить суть всех биологических закономерностей, с целью их освоения и управления.

Методы изучения:

  • наблюдение с целью описания явлений;
  • сравнение – обнаружение общих закономерностей;
  • эксперимент – искусственное создание ситуаций, выявляющие свойства организмов;
  • исторический метод – познание окружающего мира с помощью имеющихся данных;
  • моделирование — создания моделей разнообразных биологических систем;
  • современные усовершенствованные методы, основанные на новейших технологиях и достижениях.

Основные отрасли, которые нужно знать, и предметы их изучения:

  • зоология – животные;
  • энтомология – насекомых;
  • ботаника – растения;
  • анатомия –строение тканей и органов;
  • генетика – законы изменчивости и наследственности;
  • физиология –сущность всего живого, жизнь при патологиях и норме;
  • – взаимоотношение организмов с окружающей средой;
  • бионика – организацию, структуру, свойства живой природы;
  • биохимия – химический состав организмов и клеток, основные процессы, составляющие основу жизнедеятельности;
  • биофизика – физические аспектах существования живой природы;
  • микробиология – бактерии и прочие микроорганизмы;
  • молекулярная биология – способы хранения и передачи генетической информации;
  • клеточная инженерия – получение гибридных клеток;
  • битехнология – использование продуктов жизнедеятельности организмов для технологических решений;
  • селекция – выведение новых сортов, устойчивых к вредителям и суровому климату, улучшение качеств культурных растений.

Здесь перечислены далеко не все биологические науки, этот список может быть гораздо длиннее.


Экология – раздел биологии,
изучающий отношения организмов друг с другом и окружающей средой. Раздел затрагивает не только факторы среды , ее физическую сущность, химический состав, но и ее загрязнение, нарушение ЭКО-цикла .

Эрнест Геккель в 1866 году придумал специальное название для этого научного направления. Раздел биологии, изучающий отношения организмов, их взаимодействие не только друг с другом, но и со средой, именуется прикладной экологией .

Она относится к отрасли биологии и является прикладной наукой, изучает механизмы разрушения человеком биосферы и способы предотвращения экологических катастроф. Отличается от прочих биологических областей тем, что ученым не приходится узнавать или изучать что-то новое, а использовать уже имеющиеся методики и разработки на практике.

Именно применением практических методов отличаются прикладные . Таким образом, мы ответили на вопрос, какая из биологических наук является практической или прикладной.

Чтобы добиться на практике реальных целей, нужны заказчик и инвестор. Часто крупные проекты и их реализацию финансирует государство: сохранение исчезающих видов животных , рациональное уничтожение отходов и сведение к минимуму загрязнения окружающей среды. Прикладной экологию принято считать потому, что она неразрывно связана со всеми процессами, происходящими с живыми существами.

Классификация

Любая обширная научная область предполагает деление на отдельные отрасли. Классификация биологических наук осуществляется на основании нескольких признаков. В зависимости от предмета или объекта изучения выделяются:

  • зоология,
  • ботаника,
  • микробиология и другие.

По уровню, на котором рассматривается живая материя :

  • цитология,
  • гистология,
  • молекулярная биология и другие.

По обобщенным свойствам организмов :

  • биохимия,
  • генетика,
  • экология и прочие.

Классификация биологических наук не означает их всецелой принадлежности к определенной области, каждая тесно взаимосвязана с другими. Например, изучать клетки невозможно без знания о происходящих в них биохимических процессах.

Интересно! Таксономия грибов современности (гриб) — это ни растение, ни живое существо. Гриб относят к отдельному типу живых организмов, так что для его изучения применяют совсем иные способы. Это находится в ведении микологии — отрасли биологии.

Уникальный метод


Культура тканей –
это метод, позволяющий выращивать ткани, а также их клетки вне организма. В теории его предложил еще в 1874 году Голубев А.Е., а на практике применил лишь в 1885 году Скворцов И.П. Затем этот метод совершенствовался и развивался.

Выращивание тканей вне организма — пример метода культуры клеток.

Суть методики такова: берется небольшой кусочек нужной ткани конкретного организма и помещается в специально подготовленную питательную среду . Процесс происходит в стерильных условиях и при оптимальной температуре. Через некоторое время из спокойного состояния ткань начинает переходить в нормальное, с делением, питанием и выделением продуктов жизнедеятельности. Находясь в такой среде, ткань может генерироваться с огромной скоростью, но нужно вовремя менять раствор, потому что загрязненная среда угрожает измельчением клеток и их гибелью.

Что изучает биология с помощью метода культуры тканей . В основном технология используется при доказательствах теорий не только в биологии, но и в медицине. Так был исследован один из сложных процессов – митоз . Изучалось деление клеток на стадии развития эмбриона у птиц и млекопитающих. Есть несколько заболеваний, подтвердить которые можно лишь с помощью этого метода, например, неправильное количество хромосом у человека. Всем известные вакцины от полиомиелита, оспы или кори разработаны с помощью культуры тканей. Это удивительный подход. Также его широко применяют в парфюмерии.

Создание органов или их частей пока не находит большого распространения в связи с этическими нормами. Кроме того, технология эта дорогостоящая. Подобные передовые методики востребованы во многих областях науки.

Интересно! Размножаются способом культуры тканей такие растения, как гербера, орхидея, женьшень и картофель.

Разделы

Морфология в биологии – одна из областей, изучающая строение организмов. В ней выделяют два основных раздела: эндономию и анатомию. Первая занимается исследованием внешних признаков живого существа , а вторая – внутренних. Что изучает морфология в разделе эндономии: критерии, по которым разделяют организмы на виды. Проводится классификация по внешнему виду, форме, размеру, окрасу и прочим признакам.

Долгое время именно они оставались единственными определяющими факторами, а внутреннее строение не учитывалось. Позже оказалось, что особи одного биологического вида могут делится на самцов и самок, появилось новое понятие — половой диморфизм .

Анатомия изучает внутреннее строение, находящееся выше клеточного уровня. На основе полученных данных производится систематизация видов в группы, что позволило выделить две основные группы органов: аналогичные, то есть одинаковые у всех видов, и гомологичные. К первым относят части тела, которые схожи по функциям, но имеют различное происхождение, а вторые – различное происхождение, но одинаковые функции. Пример гомологичных – передние конечности млекопитающих и крылья у птиц.

Биология – наука о живой природе

ЕГЭ Биология 1.1. Биология как наука, методы познания живой природы

Вывод

Набор дисциплин имеет огромное значение для дальнейшего развития практически всех сфер деятельности человека. Знание законов природы и устройства организмов помогает улучшить качество нашей жизни: совершенствовать способы лечения, производить новые медицинские препараты, косметические средства, улучшать качество продуктов питания, сохранить чистоту окружающей среды и многое другое.

Биология - наука о жизни. В настоящее время она представляет собой комплекс наук о живой природе. Объектом изучения биологии являются живые организмы - растения и животные. и изучают многообразие видов, строение тела и функции органов, развитие, распространение, их сообщества, эволюцию.

Первые сведения о живых организмах начал накапливать еще первобытный человек. Живые организмы доставляли ему пищу, материал для одежды и жилища. Уже в то время человек не мог обойтись без знаний о свойствах растений, местах их произрастания, сроках созревания плодов и семян, о местах обитания и повадках животных, на которых охотился, хищниках и ядовитых животных, которые могли угрожать его жизни.

Так постепенно накапливались сведения о живых организмах. Приручение животных и начало возделывания растений потребовали более глубоких сведений о живых организмах.

Первые основатели

Значительный фактический материал о живых организмах был собран великим врачом Греции - Гиппократом (460-377г. до н.э.). Им собраны сведения о строении животных и человека, дано описание костей, мышц, сухожилий, головного и спинного мозга.

Первый большой труд по зоологии принадлежит греческому естествоиспытателю Аристотелю (384-322г. до н.э.). Он описал более 500 видов животных. Аристотель интересовался строением и образом жизни животных, он заложил основы зоологии.

Первая работа по систематизации знаний о растениях (ботаника ) выполнена Теофрастом (372-287г. до н.э.).

Расширением знаний о строении человеческого тела (анатомия) древняя наука обязана врачу Галену (130-200г. до н.э.), производившему вскрытия обезьян и свиней. Труды его оказывали влияние на естествознание и медицину в течение нескольких веков.

В эпоху средневековья под гнетом церкви наука развивалась очень медленно. Важным рубежом в развитии науки явилась эпоха Возрождения, начавшаяся в XVв. Уже в XVIIIв. развивались как самостоятельные науки ботаника, зоология, анатомия человека, физиология.

Основные вехи в изучении органического мира

Постепенно накапливались сведения о многообразии видов, строении тела животных и человека, индивидуальном развитии, функциях органов растений и животных. На протяжении многовековой истории биологии крупнейшими вехами в изучении органического мира можно назвать:

  • Введение принципов систематики, предложенных К.Линнеем;
  • изобретение микроскопа;
  • создание Т.Шванном клеточной теории;
  • утверждение эволюционного учения Ч.Дарвина;
  • открытие Г.Менделем основных закономерностей наследственности;
  • применение электронного микроскопа для биологических исследований;
  • расшифровка генетического кода;
  • создание учения о биосфере.

К настоящему времени науке известно около 1 500 000 видов животных и около 500 000 видов растений. Изучение многообразия растений и животных, особенностей их строения и жизнедеятельности имеет большое значение. Биологические науки являются базой для развития растениеводства, животноводства, медицины, бионики, биотехнологии.

Одними из древнейших биологических наук являются анатомия и физиология человека, составляющие теоретический фундамент медицины. Каждому человеку следует иметь представление о строении и функциях своего организма, чтобы в случае необходимости уметь оказать первую помощь, сознательно беречь свое здоровье и выполнять гигиенические правила.

На протяжении веков ботаника, зоология, анатомия, физиология разрабатывались учеными как самостоятельные, изолированные науки. Лишь в XIXв. были обнаружены закономерности, общие для всех живых существ. Так возникли науки, изучающие общие закономерности жизни. К ним относятся:

  • Цитология - наука о клетке;
  • генетика - наука об изменчивости и наследственности;
  • экология - наука о взаимоотношениях организма со средой и в сообществах организмов;
  • дарвинизм - наука об эволюции органического мира и другие.

В учебном курсе они составляют предмет общей биологии.

от греч. ???? – жизнь и????? – учение) – совокупность наук о жизни. В предмет Б. входит изучение жизни как особой формы движения материи, законов развития живой природы, а также изучение живого во всем многообразии его проявлений и на всех уровнях орг-ции: субмикроскопическом (макромолекулярном), микроскопическом (клеточном), на уровне многоклеточного индивида (организменном) и на более высоких уровнях – видовом, биоценотическом и живого вещества биосферы в целом. Б. тесно связана с философией и на всем протяжении своего развития, особенно в совр. условиях, является ареной борьбы материализма и идеализма. Ряд важных естеств.-науч. обоснований диалектич. материализм черпает из данных Б., а идеалистич. философия паразитирует на еще не решенных проблемах и на гносеологич. противоречиях, возникающих в процессе познания. Б. является теоретич. основой медицины и всех отраслей х-ва, связанных с живыми организмами. Б. изучает сущность и закономерности биологич. формы движения материи, являющейся по сравнению с химической, физической и механической высшей формой движения материи. Неправильное понимание соотношения биологич. формы движения материи с остальными формами является источником двух крайних метафизич. концепций живого: с одной стороны, механич. концепции, отрицающей специфику живого и сводящей его к формам движения, действующим в неорганич. природе (особенно к физическому и химическому и, в конечном счете, механич. движению), а с другой – виталистич. концепции (см. Витализм) с попыткой разорвать и принципиально противопоставить живое и неживое, абсолютизировать специфику живого и превратить ее в некое самостоятельное "начало" или "субстанцию жизни", к-рая якобы не может находиться в связи с физико-химич. процессами. В соответствии с этим выявились два крайних представления о методах познания живого. Согласно одному из них, сущность биологич. явлений может раскрыть только химия и физика; согласно другому, химия и физика неприложимы к их познанию. Оба эти подхода односторонни и ошибочны. Поскольку биологич. форма движения материи включает в себя в качестве подчиненного момента более простые – химическую, физическую и механич. формы движения материи, и высшей форме движения материи присущ ряд закономерностей и процессов, связанных с входящими в нее низшими формами, постольку к исследованию жизненных процессов в определенной степени вполне приложимы химич. и физич. методы (напр., к исследованию ферментативных реакций, материальных основ наследственности и др.). Но так как биологич. форма движения материи – качественно новая форма, она требует в то же время новых методов исследования, методов вскрытия специфически биологич. закономерностей (напр., закономерностей видообразования в живой природе и др.). Т.о., для познания сущности закономерностей жизненных процессов в соответствии с соотношением и взаимосвязью различных форм движения материи в живой природе должны применяться и биологич., и химич., и физич. методы исследования. Примером конкретного проявления взаимосвязей форм движения материи в природе является единство организма и условий его жизни на основе биологич. обмена веществ, раскрытие к-рого (единства) является крупнейшим завоеванием совр. биологии (см. Мичуринское учение). В этом единстве налицо превращение физич. (напр., свет, тепло), химич. (напр., пища, влага, воздух) движений и их материальных носителей в биологич. движение материи и его носителей (живое тело). Познать его возможно только на основе комплексного применения методов исследования, соответственно указанным формам движения материи; биологич. понятия позволяют объяснять биологич. явления только при учете связи этих явлений с их физико-химич. стороной. Совр. Б. представляет собой сложный комплекс отраслей и является одной из наиболее дифференцированных наук. Разделение Б. на отрасли совершалось стихийно в связи с ростом потребностей практики, по мере углубления и роста объема знаний, развития методов исследования. В 17–18 вв. Б. разделялась на ботанику и зоологию, каждая из к-рых подразделялась всего на 4 отрасли: систематику, морфологию, анатомию и физиологию. Осн. задача Б. состояла в разработке удобной системы классификации живых существ. В соответствии с этим ведущей отраслью Б. являлась систематика, а господств. способом исследований – описательный. Гл. достижением этой эпохи была система Линнея. В течение 1-й пол. 19 в. сформировалось еще 5 отраслей: эмбриология, гистология, биогеография, сравнит. анатомия и палеонтология. Осн. задача Б. в этот период заключалась в установлении и обосновании факта единства строения живых существ. Преобладающим способом исследования стал сравнит. метод, ведущей отраслью оказалась морфология. Были созданы теория типов строения Ж. Кювье – К. Бэра и клеточная теория Шлейдена – Шванна. В качестве осн. идей Б. в то время господствовали положения о неизменности формы, постоянстве видов, предустановленной свыше целесообразности организма. Существенные материальные причины явлений органич. жизни еще почти не были известны, и это давало большой простор для создания идеалистич. гипотез (витализм, преформизм и идеалистич. эпигенез, телеологич. теории изначально заданной гармонии живой природы). Этот период развития Б. получил, согласно Энгельсу, название метафизического. После переворота, произведенного в сер. 19 в. учением Дарвина, Б. впервые стала наукой в подлинном смысле слова. Открытием осн. факторов и движущих сил эволюции Дарвин обосновал материалистич. взгляд на причины органич. целесообразности и тем самым разрушил телеологич. доктрину целесообразности, бывшую одним из оплотов идеализма в Б. Начал широко внедряться историч. метод, на основе к-рого в уже сложившихся отраслях возникли новые направления: эволюц. эмбриология (А. О. Ковалевский, И. И. Мечников, Э. Геккель), эволюц. физиология (И. М. Сеченов, К. А. Тимирязев), эволюц. палеонтология (В. О. Ковалевский), эволюц. морфология (А. Дорн, Л. Долло, А. Н. Северцов и др.). Нек-рые из этих направлений переросли в особые отрасли Б. Важнейшим результатом воздействия эволюц. теории явилось также выдвижение на первый план исследований каждого фактора эволюции в отдельности. Во 2-й пол. 19 в. предметом систематич. изучения впервые сделался не только многоклеточный индивид, но и низший уровень организации живого – клеточный (Л. Пастер и др.). Благодаря усовершенствованию микроскопа и введению ряда новых методик (микротомирование, фиксирование препаратов, окрашивание, стерилизация, чистые культуры и пр.) в 20 в. быстро развились такие науки, как цитология, микробиология, протистология. Успехи органич. и коллоидной химии в конце 19 – нач. 20 вв., а также требования развития физиологии и медицины сделали возможным формирование особой науки – биохимии. Тем самым впервые была создана возможность науч. познания обмена веществ в целостном организме и выяснения самого коренного процесса, характеризующего жизнь, – автоматич. саморепродукции белка. Однако конкретное изучение способов синтеза белка в живом организме стало возможным лишь в последнее время, в связи с переходом к исследованию самого низшего – макромолекулярного – уровня орг-ции живого, на основе использования целой совокупности данных новейших отраслей (вирусологии, цитогенетики, цитохимии, химии полимеров, биофизики) и самых совершенных методик (рентгеноструктурный анализ, электронная микроскопия, радиоактивные изотопы, экспериментальное получение мутаций ионизирующими излучениями и т.п.). Наряду с познанием живого на микроскопич. (клеточном), а потом и на субмикроскопич. (макромолекулярном) уровнях в Б. возникли методы изучения высоких уровней орг-ции живого (надорганизменных). С 20–40-х гг. 20 в. быстро развиваются исследования динамики популяций (генетические, эволюционно-экологические и др.). Популяция представляет собой комплекс родств. совместно живущих и свободно скрещивающихся между собой организмов. Это – элементарная форма существования вида и единица эволюции. Изучение популяций не только углубляет знания о сущности вида и первых шагов эволюц. процесса, но и позволяет разрешить капитальную проблему связи между различными уровнями орг-ции живого. Именно в недрах популяций осуществляются сложные зависимости между видовым, организменным, клеточным, а также макромолекулярным уровнями. Познание этих зависимостей потребовало применения статистич. методов и др. способов математич. анализа, без к-рых не могут быть вскрыты закономерности, действующие среди массы компонентов, входящих в состав наследств. основы каждой клетки, среди миллиардов клеток и множества организмов. С 80-х гг. 19 в. выдвигаются на первый план и становятся центральными в Б. следующие проблемы: причины изменчивости организмов, сущность наследственности и способы накопления наследств. изменений в поколениях, значение факторов внешней среды в процессе развития организма и вида, относит. роль наследственности и влияния внешней среды в процессе приспособления организма в онтогенезе. Разработка этих проблем требовала применения эксперимента, к-рый вскоре занял господств. положение среди др. способов исследования, обусловив появление в начале 20 в. целой группы новых отраслей Б.: экспериментальной эмбриологии и экспериментальной морфологии, генетики, экспериментальной экологии и др. На основе эволюц. учения, удовлетворяя запросы развивавшегося с. х-ва, начал формироваться ряд научно-практич. дисциплин (селекция, почвоведение и др.). Развитие новых экспериментальных отраслей Б. сопровождается идейной борьбой между материалистич. и идеалистич. толкованиями осн. закономерностей и явлений жизни. Идеализм проникал в Б. не только из идеалистич. философии, но и возникал непосредственно в ней самой в результате гносеологич. ошибок при формулировании гипотез и истолковании фактов. Идеалистич. воззрения часто вырастали на почве абсолютизации к.-л. одной стороны или одного из элементов сложной орг-ции живого, изученного в условиях экспериментально достигнутой изоляции от целого. Именно такие ошибки явились причиной появления в нач. 20 в. идеалистич. течений в генетике, экспериментальной эмбриологии, физиологии и др. В качестве примеров можно привести абсолютизацию устойчивости наследственности и защиту идей о ее неизменности, отрыв внешних факторов от внутренних и переоценку роли внутр. (автогенез) или внешних (эктогенез) факторов, отрыв целого от частей и защиту идеи о "целом" как нематериальной сущности (организмизм, холизм и др.), абсолютизацию способности отд. клеток и организмов к приспособит. перестройкам (регуляциям) и защиту идей об изначальной целесообразности (неовитализм) и телеологич. теорий эволюции (номогенез) и т.д. Однако постепенно самим ходом развития познания эти идеалистич. концепции опровергаются и одна за другой изгоняются из науки. Этому процессу способствовали работы И. П. Павлова, И. В. Мичурина, т.д. Лысенко и др. в области закономерностей приспособит. изменчивости организмов в индивидуальном развитии под влиянием факторов внешней среды и по управлению формированием и реагированием организмов, а с 30-х гг. 20 в. – все развитие мировой генетики, физиологии, экологии и др. наук. Эксперимент был объединен с историч. подходом к объекту; все большее число ученых стихийно или сознательно работало на основе метода материалистич. диалектики. В конце 19 в. зародилась, а в 20 в. сформировалась особая отрасль – биоценология, в задачу к-рой входит познание закономерностей, присущих сообществам живых организмов (биоценозам), состоящим из представителей мн. видов животных, растений и микроорганизмов. Изучение биоценозов диктовалось не только необходимостью открытия законов, управляющих межвидовыми и внутривидовыми отношениями, но и потребностями нар. х-ва (возобновление и развитие древесных насаждений, лугов и степных пастбищ, населения водоемов и т.п., необходимые для рациональной орг-ции кормовой базы, рыбного и пушного х-ва, эксплуатации лесов и др.). Закономерности еще более высокого уровня, действующие в природных комплексах, возникающих в результате взаимодействия живого с геохимич. процессами на отд. участках территории или на всей географич. оболочке земного шара, рассматриваются биогеохимией и нек-рыми др. науками, возникшими в 20 в. Таким образом, в течение последних 100 лет дифференциация Б. проходила с небывалой скоростью и осуществлялась сразу в нескольких различных планах, в конечном счете под воздействием растущих требований со стороны нар. х-ва и медицины. Развитие Б. происходило в процессе сложного взаимодействия тенденций к анализу и синтезу знаний. Каждое новое большое обобщение приводило к объединению ранее обособленных друг от друга отраслей и вместе с тем стимулировало создание новых отраслей и раздробление уже сложившихся. Дифференциация совр. Б. явилась результатом различных процессов: 1) обособления в особые отрасли разделов ранее единых наук по мере накопления материала (напр., формирование энтомологии, ихтиологии и др. отраслей зоологии, микологии, альгологии, лихенологии и др. отраслей ботаники); 2) новообразования отраслей после открытия нового объекта (напр., вирусология), новой общей стороны живого, напр. наследств. изменчивости (генетика) или общей закономерности (эволюц. теория); 3) разработки новых подходов или методик исследования (напр., эволюц. физиология, радиобиология, биохимич. генетика, экологич. гистология, физиология высшей нервной деятельности); 4) в связи с изучением областей явлений, пограничных между органич. и др. формами движения материи (биофизика, биохимия, биогеохимия, комплекс биогеографич. дисциплин, антропология и др.); 5) через обособление в особую отрасль отд. разделов, имеющих важное практич. значение для нар. х-ва или медицины (растениеводство, фитопатология, рыбоводство, паразитология, бактериология и т.п.). Вслед за биохимией и наследованием химич. основ жизненных явлений возник и начал развиваться новый молодой раздел Б., превращающийся в наст. время в самостоят. дисциплину – биофизику. В задачу биофизики входит исследование физич. и физико-химич. свойств биологич. объектов, физич. процессов, совершающихся в живой системе, а также биологич. действия физич. факторов и, в первую очередь, ионизирующих излучений. Большую роль в развитии и становлении биофизики играют все б?льшие и б?льшие возможности применения разнообразных физич. методов, в частности упомянутых выше. Часто эти методы являются не только более удобным и точным приемом исследования, но, вскрывая новые стороны физич. или физико-химич. свойств и процессов, создают принципиально новые аспекты рассмотрения явлений. Так, переход в область субмикроскопич. исследований с помощью электронной оптики и рентгеноструктурного анализа создает своеобразную область – "молекулярную морфологию". Здесь, при переходе на молекулярный уровень, в описат. подход, свойственный морфологии, неизбежно входят представления о химич. и физич. свойствах молекул и о природе сил, управляющих их взаимодействием. Исключит. значение приобретает многообразное использование в биологии электроники. Помимо новых возможностей тончайшего измерения самых различных процессов, совершающихся даже в микроструктуре клеток, электроника открывает перспективы электрич. моделирования необычайно сложной взаимосвязи различных сторон жизненных явлений, помогая раскрывать сущность неповторимой специфики живого. Развитие физич. методов, использование теоретич. представлений совр. физики неизбежно широко открывают доступ в биологию для математич. анализа и математич. обобщений. В наст. время Б. стоит у порога новых кардинальных открытий, к-рые позволят установить более глубокие связи между различными формами движения материи, глубже познать сущность самой жизни и более эффективно управлять процессами, протекающими в отд. организмах и в живой природе в целом (синтез живого вещества, сущность наследств. изменчивости, законы регулирования процессов на различных уровнях орг-ции живого). Существ. роль в познании закономерностей жизни сыграет все большее и большее использование достижений совр. химии и физики и применение новых технич. средств эксперимента. Это широкое использование смежных дисциплин не стирает грани между живой и мертвой природой, не ведет к упрощенчеству и схематизации, а является вполне правильным науч. методом, разумеется, не исключающим, а дополняющим др. методы биологич. исследования, в комплексе с к-рыми он позволяет раскрыть более глубоко и более полно интимнейшие стороны материальных основ жизненных явлений как особой и специфической формы движения материи. К. Завадский. Ленинград. Г. Франк. Москва.

Последние материалы раздела:

Чудеса Космоса: интересные факты о планетах Солнечной системы
Чудеса Космоса: интересные факты о планетах Солнечной системы

ПЛАНЕТЫ В древние времена люди знали только пять планет: Меркурий, Венера, Марс, Юпитер и Сатурн, только их можно увидеть невооруженным глазом....

Реферат: Школьный тур олимпиады по литературе Задания
Реферат: Школьный тур олимпиады по литературе Задания

Посвящается Я. П. Полонскому У широкой степной дороги, называемой большим шляхом, ночевала отара овец. Стерегли ее два пастуха. Один, старик лет...

Самые длинные романы в истории литературы Самое длинное литературное произведение в мире
Самые длинные романы в истории литературы Самое длинное литературное произведение в мире

Книга длинной в 1856 метровЗадаваясь вопросом, какая книга самая длинная, мы подразумеваем в первую очередь длину слова, а не физическую длину....