Способы задания конечных автоматов. Определение и способы задания конечного автомата

Элементы теории автоматов

План:

1. Понятие автомата, принцип работы автомата

2. Способы задания конечных автоматов

3. Общие задачи теории автоматов

Теоретические сведения

Человек всегда стремился к тому, что бы облегчить свой труд, заставляя работать на себя некоторые механические устройства без собственного вмешательства. Вначале это были сказки, затем они стали превращаться в обыденные вещи. Автомобиль, телевизор, стиральные машины, целые производства работают без участия человека. Причем, вмешательство человека в большинстве случаев не требуется, а в ряде случаев, такое вмешательство может привести к негативным явлениям. Понятие «автомат», как некоторое устройство, выполняющее определенный вид действий давно трактуется людьми именно так.

Понятие автомата, принцип работы автомата

Понятие автомат рассматривается в двух аспектах:

1. Автомат – устройство , выполняющее некоторые функции без непосредственно участия человека. Автомат это реальное устройство, понятное, почему и как оно работает, хотя бы для тех людей, которые его сконструировали и изготовили. Автомобиль, трактор, самолет, светофор, телевизор, телефон – все это автоматы. В этом аспекте ЭВМ следует понимать как автомат, который работает по программе, составленной человеком.

2. Автомат – математическое понятие , обозначающее математическую модель реальных технических устройств. Автомат это абстрактное устройство, непонятно почему и как оно работает и, вообще, почему оно может работать. В этом аспекте автомат есть «черный ящик», который теоретически способен проводить некоторые действия. С точки зрения математики, абсолютно неважно что, как и почему производит те или иные действия.

Любой автомат должен иметь некоторое количество входов, некоторое количество выходов и некоторое количество внутренних состояний.

Алгебраическая теория автоматов является разделом теоретической кибернетики, который изучает дискретные автоматы с абстрактной алгебраической точки зрения.



Общая теория автоматов содержит различные подразделы. В зависимости от предмета изучения она делится на абстрактную теорию автоматов и структурную теорию автоматов.

Абстрактная теория автоматов изучает переходы, совершаемые автоматом, на который воздействуют входные сигналы, а также выходные сигналы как результат этих переходов.

Предметом изучения структурной теории автоматов является структура автомата, а также структура входных и выходных сигналов, например, способы кодирования входных и выходных сигналов и др.

Определение конечных автоматов

Автомат - абстрактная модель устройства, функционирующего в дискретном времени, которая перерабатывает конечную последовательность входных сигналов и превращает их в конечную последовательность выходных сигналов (реакций).

В процессе работы конечного автомата происходит последовательная смена конечного число его внутренних состояний, причем состояние автомата в определенный момент времени однозначно определяется входным и выходным сигналами. Такие автоматы представляют собой основу всей современной вычислительной техники и всевозможных дискретных систем автоматического контроля и управления.

Понятие автомата настолько абстрактное, что трудно сказать, когда человек вообще обходился без каких либо автоматов. Под определение автомата подходят любые устройства, в том чис­ле те, которыми первобытные люди охотились или метали кам­ни, защищая свое жилище от неприятеля.

Алгоритм – понятное и точное формальное предписание исполнителю, однозначно определяющее содержание и последовательность операций, переводящих заданную совокупность исходных данных в искомый результат

Считается, что первым программным устройством, созданным человеком, были часы. Часовые механизмы с помощью пружины, приводящей в действие шестеренки и кулачковые механизмы, зубчатые колеса и рычаги, осуществляют ряд определенных действий. Примером такого часового механизма могут быть знаменитые часы на Центральном театре кукол в Москве, где он приводит в действие двенадцать сказочных героев, расположенных на циферблате.

Укажем несколько любопытных исторических фактов, связанных с автоматами, как механическими устройствами.

1. Немецкий философ и алхимик Альберт Великий с 1216 по 1246 г., создавал «железного» слугу - автомат, который выполнял в доме обязанности привратника.

2. Астроном Иоганн Мюллер (Региамонтан) (1436-1476) создал механического орла, который приветствовал наклоном головы и движением крыльев въезд в Нюрнберг императора священной Римской империи Максимилиана II.

3. Механик Жак де Вакансон (1709-1782) – автор первого в мире автоматического ткацкого станка. Он создал образ механической утки, точной копии своего живого двойника - плавала, чистила перья, глотала с ладони зерна. Его механический флейтист, исполнявший одиннадцать музыкальных пьес, поражал людей, живших в те далекие годы.

4. Русский изобретатель 19 в. А. М. Гамулецкий создал целый механический кабинет, в котором было множество сконструированных им автоматов. Здесь в том числе была и говорящая голова чародея и амур, играющий на арфе, которые поражали воображение современников.

5. Первый примитивный арифмометр сконструировал в 1641 г. Блез Паскаль. Толчком для открытия были мучения его отца – налогового, инспектора, который днями и ночами работал с большими вычислениями. Изобретя арифмометр, восемнадцати летний сын избавил отца от сложных вычислений, а миру подарил первый калькулятор, производящий сложение и вычитание чисел.

6. Первый шахматный автомат был построен в 1890 г. испанским инженером Торресом Кеведо. Такой автомат мог разыграть лишь ладейный эндшпиль (король и ладья против короля).

7. Первую вычислительную машину с автоматическим управлением создал Чарльз Баббедж в 1822 г. Он спроектировал арифмометр , который имел запоминающие и арифметические устройства. Эти устройства стали прототипами аналогичных устройств современным ЭВМ.

Виды автоматов.

Автомат можно трактовать как устройство, выполняющие процессы приема, преобразования и передачи энергии, материалов или информации в соответствии с заложенной в них программой, но без непосредственного участия человека.

Любой автомат имеет собственные базовые множества, которые включают в себя:алфавит входа, алфавит выхода, множество состояний автомата.

Характерной особенностью конечного автомата является наличие памяти, которая определяет состояние автомата в зависимости от времени. Внешним проявлением различных состояний автомата является его реакция на однотипные воздействия (сигналы).

В работе конечных цифровых автоматов важным понятием является время.

Автоматы можно классифицировать по различным признакам.

1. По виду деятельности - автоматы делятся на: информационные, управляющие и вычислительные.

К информационным автоматам относятся разнообразные справочные таблицы, информационные табло на стадионах, устройства аварийной сигнализации.

К управляющим автоматам принято относить устройства для управления некоторым процессом, в том числе конкретно: лифтом, конвейером, станком, шлагбаумом.

К вычислительным автоматам относятся микрокалькуляторы, процессоры в ЭВМ и иные устройства, выполняющие вычисления.

Однако, строго говоря, многие, автоматы представляют собой настолько сложные системы, что они являются одновременно и вычислительными, и управляющими, и информационными автоматами.

2. Конечные автоматы – с точки зренияинформатики это такие автоматы, которые представляют собой дискретные преобразователи информации. К ним относятся преобразователи, в которых содержится конечное множество входных и конечное выходных сигналов, а также конечное множество внутренних состояний

3. Цифровые автоматы - автоматы, которые преобразует цифровую информацию. В таком автомате входные сигналы задаются в виде конечного множества мгновенных символов: их длительность настолько мала, что ею можно пренебречь. За фиксированное время происходит преобразование входных символов, а на выходе происходит скачкообразный переход из одного состояния в другое состояние.

4. Абстрактные автоматы - отображающие множество слов входного алфавита Х во множество слов выходного алфавита Y.

Абстрактный автомат есть:

~ Математическая модель,

~ Алгоритм действия некоторого преобразования кодовых последовательностей,

~ Закон преобразования входного алфавита в выходной.

5. Синхронные и асинхронные автоматы . В зависимости от того, одновременно или последовательно принимаются входной сигнал и сигнал смены состояний, автоматы делятся насинхронные и асинхронные автоматы.

В синхронных автоматах продолжительность входных сигналов и время переходов согласовано между собой. Они используются в вычислительных комплексах, АСУ и т.д.

В асинхронных автоматах продолжительность входных сигналов и время переходов не согласовано между собой. Они зависят от внешних источников - различных событий, а интервал дискретности является переменным (например, в кодовых замках). В асинхронных автоматах очередное изменение значений входных сигналов может произойти только при условии, что закончился переходный процесс, вызванный предыдущим изменением этих сигналов.

6. Автоматы делятся на конечные и бесконечные автоматы. Если в основании классификации лежит объем памяти, то различие заключается в том, имеет ли автомат конечное или бесконечное число внутренних состояний.

Под бесконечным автоматом обычно понимают определенную математическую идеализацию представлений об автомате, имеющую бесконечное число состояний. Память такого автомата потенциально может неограниченно возрастать. Например, известные абстрактные автоматы Поста и Тьюринга являются бесконечными автоматами, но сама ЭВМ или ее отдельные части - конечными автоматами.

7. Автоматы делятся на детерминированные и вероятностные автоматы . Если в основании классификации лежит механизм случайного выбора, то различают детерминированные и вероятностные (стохастические) автоматы.

В детерминированных автоматах поведение и структура в каждый момент времени однозначно определены текущей входной информацией и состоянием самого автомата в предшествующий момент времени.

В вероятностных автоматах эта зависимость связана еще и с некоторым случайным выбором.

Вероятностный автомат - это дискретный преобразователь информации, функционирование которого в каждый момент времени зависит только от состояний памяти и описывается статистическими законами.

8. Универсальный автомат. В теории автоматов доказано, что для выполнения различных преобразований информации достаточно построить универсальный автомат с помощью программы и соответствующего кодирования, способный решать любые задачи.

Математическая модель цифрового автомата с одним входом задается пятью объектами:

X- конечное множество входных символов, входной алфавит:

Х= {x 1 (t), x 2 (t), …, x n (t)};

Y- конечное множество выходных символов, выходной алфавит:

У={y 1 (t), y 2 (t), …, y n (t)};

Q ~ конечное множество состояний автомата:

Q= {q 0 (t), q 1 (t), q 2 (t), …, q n (t)}, q 0 - начальное состояние;

δ(q, х ) - функция перехода автомата из одного состояния в другое: (Q х X) ®Q;

λ(q, х ) ~ функция выхода автомата: (Q x Х) ® Y.

Таким образом, конечный автомат С= (X, Q, У, δ, λ.) определяется рекуррентными соотношениями

q(0) = q 0 , q(t + I) = δ (g(t), х(t)), y(t) = λ (g(t), х(t)),

t- дискретизированный момент времен или это есть образ монотонной функции t :. Т ® N, причем Т - обычное непрерывное время, N - множество натуральных чисел.

Все время работы Т разбивается на конечное число интервалов, на границе которых происходит изменение состояния автомата. При этом t(Г 0) – показывает число изменений, произошедших до момента времени Г 0 .

Примером дискретизации служит обычный кинематограф: время разбито на интервалы длительностью 1/24с. Человеческий глаз воспринимает следование дискретных кадров как непрерывное движение.

9. Синхронные автоматы делятся на автоматы Мили и автоматы Мура . В зависимости от способа организации функции выхода синхронные автоматы делятся на автоматы Мили (автоматы I рода) и автоматы Мура(автоматы II рода).

В автоматах Мили - выходной сигнал y (t) x (t) и состоянием q (t- 1) автомата в предшествующий момент времени (t- 1). Математической моделью таких автоматов служит система уравнений:

q(t) = δ (q(t-1), х(t)) и y(t) = λ (q(t-1), х(t)),

В автоматах Мура выходной сигнал y (t) однозначно определяется входным сигналом x (t) и состоянием q (t) в данный момент времени t. Математической моделью таких автоматов является система:

q(t) = δ (q(t-1), х(t)) и y(t) = λ (q(t)),

В таких автоматах функция выхода зависит только от состояний автомата в данный момент времени и не зависит от входного сигнала. Таким образом, входная строка такого автомата однократно считывается слева направо, осуществляя поочередный просмотр символов. В определенный момент времени конечный автомат находится в некотором внутреннем состоянии, которое изменяется после считывания очередного символа. Новое состояние можно охарактеризовать считанным символом и текущим состоянием.

10. Комбинационные автоматы – есть автоматы, в которых выходной символ не зависит от его состояния и определяется лишь текущими входными символами, т.е. в этом автомате все состояния эквивалентны. В таком автомате вырождена функция перехода, она принципиально не важна и в процессе функционирования неизменна. Поэтому минимальный комбинационный автомат имеет лишь одно состояние.

11 Логические автоматы – есть автоматы у которых входной алфавит состоит из 2 т двоичных наборов длины т, а выходной - из 2 n двоичных наборов длины п. Для логических комбинационных автоматов функция выхода имеет вид системы п логических функций от т переменных.

Представление конечного автомата фактически сводится к описанию задающих его автоматных функций.

Существуют три способа задания конечных автоматов:

· Табличный (матрицы переходов и выходов);

· Графический (с помощью графов);

· Аналитический (с помощью формул).

Аналитический способ – автомат задаетсясистемой уравнений. Из такой системы следует, что при конечном числе возможных внутренних состояний количество возможных значений автоматных функций также оказывается конечным. Примером такого задания служат системы уравнений, задающие автоматы Мили и автоматы Мура

Табличный способ. Составляется таблица состояния автоматадля функции перехода – δ и функции выхода. При этом:

· столбцы таблицы соответствуют элементам входного алфавита X,

· строки таблицы соответствуют состояни­ям (элементы конечного множества Q).

Пересечению i-и строки и j-го столбца соответствует клетка (i, j), которая является аргументом функций 8 и λ автомата в момент, когда он находится в состоя­нии q i на его входе – слово x j , а в самой соответствующей клетке запишем значения функций 8 и λ. Таким образом, вся таблица соответствует множеству Q х X.

При заполнении таблицы переходов каждая клеточка однознач­но определяется парой символов: символом следующего состоя­ния и символом выходного сигнала.

На практике автоматные функции задаются двумя конечными таблицами, именуемыми соответственно матрицей перехода и матрицей выводов . При этом строки обозначаются буквами входного алфавита, а столбцы буквами внутреннего алфавита (символами, кодирующими внутреннее состояние автомата).

В матрице переходов на пересечении строки x k и столбца q r помещается значение функции перехода δ(q i , х) и функции выводов λ(q, х) . В ряде случаев обе таблицы объединяются в одну таблицу.

Графический способ.

Автомат задается с помощью графа, схемы, графика и др. Задание с помощью ориентированного гра­фа – более удобная и компактная форма описания автомата.

Граф автомата содержит

· Вершины, соответствующие состоянию q i ÎQ,

· Дуги, соединяющие вершины – переходы автомата из одного состояния в другое. На дугах принято указывать пары вход­ных и выходных сигналов – сигналов переходов.

Если автомат переходит из состояния q 1 в состояние q 2 под воз­действием нескольких входных сигналов, то на соответствующей дуге графа этот вариант будет представлен через дизъюнкцию. Для представления автомата используют двухполюсные графы с выде­ленными начальным и конечным состояниями.

Разработка шкалы «прибора для измерения емкости»

индикация + - перегруз. выкл.
0 исх.сост. 1 0 0 0 нет
1 0 2 0 13 0 да
2 50 3 1 13 0 да
3 100 4 2 13 0 да
4 150 5 3 13 0 да
5 200 6 4 13 0 да
6 250 7 5 13 0 да
7 300 8 6 13 0 да
8 350 9 7 13 0 да
9 400 10 8 13 0 да
10 450 11 9 13 0 да
11 500 13 10 13 0 да
12 ОВ 0 0 0 0 нет
13 авария 0 0 0 0 нет

Рис.2.5. Граф шкалы прибора для измерения емкости


Заключение

Поскольку применение генераторов с колебательными контурами (типа RC) для генерирования колебаний высокой частоты не удовлетворяет, для разрабатываемого генератора была взята схема типа LC (в качестве фазирующей цепочки взята трехточечная схема с автотрансформаторной связью, активный элемент - транзистор).

В теоретической части данной курсовой работы были рассмотрены элементы генераторов LC-типа. Также была рассмотрена классификация генераторов LC-типа, их назначение, а также различные схемы генераторов. А также технические характеристики элементов генераторов.

В практической части была раскрыта тема, касающаяся шифраторов, дешифраторов, их назначения, а также были спроектированы электрические функциональные и электрические принципиальные схемы шифраторов и дешифраторов. Была раскрыта тема карт Карно. Также был разработан сегмент “b” семисегментного индикатора. Был разработан конечный автомат для шкалы прибора для измерения емкости, а также граф для него.

Комбинационные схемы, хотя и позволяют реализовать любые фиксированные зависимости между входными и выходными сигналами, не могут изменять характера своего поведения (т.е. последовательности обработки данных) - любое такое изменение требует изменения структуры схемы, т.е., по сути, переходу к другой схеме. Решить проблему перестройки работы без изменения структуры схемы возможно, если ввести в нее элементы памяти, которые позволяли бы фиксировать и сохранять промежуточные состояния устройства - в этом случае выходной сигнал будет зависеть не только от входного сигнала, но и от состояния схемы. Если количество таких элементов конечно, то, как указывалось выше, дискретное устройство будет называться конечным автоматом.

Конечным автоматом называется система Y, Q>, в которой X и Y являются конечными входным и выходным алфавитами, Q - конечным множеством внутренних состояний, Y(x, q) - функцией переходов и Q(x,q) - функцией выходов.

Как указывалось ранее, Y(x,q) задает порядок преобразования входных символов и состояния автомата на предыдущем такте в состояние на последующем, a Q(x,q) - преобразования входных символов и состояния автомата на текущем такте в выходной символ. Если q 0 - начальное состояние автомата, а i - номер такта, то его работа описывается системой:

Данные соотношения получили название системы канонических уравнений конечного автомата. Пользуясь ими можно, начиная с q 0 , последовательно находить все последующие состояния автомата и выходные символы.

Выделяются два типа автоматов - инициальные и неинициальные. В инициальных автоматах начальное состояние фиксировано (т.е. они всегда начинают работать из одного и того же состояния q 0). В неинициальных автоматах в качестве начального состояния может быть выбрано любое из множества Q ; этим выбором определяется дальнейшее поведение автомата.

Представление конкретного конечного автомата фактически сводится к описанию задающих его автоматных функций. Из системы (9.3) следует, что при конечном числе возможных внутренних состояний количество возможных значений автоматных функции также оказывается конечным. Их описание возможно различными способами, наиболее распространенными из которых является табличный и с помощью диаграмм.

В табличном способе автоматные функции задаются двумя конечными таблицами, именуемыми соответственно матрицей переходов и матрицей выходов. В этих таблицах строки обозначаются буквами входного алфавита, а столбцы - буквами внутреннего алфавита (символами, кодирующими внутреннее состояние автомата). В матрице переходов на пересечении строки (x k) и столбца (q r) помещаются значения функции Y (q r , x k), а в матрице выходов - значения функции Q(q r , x k).

Можно выделить два класса языков для описания функционирования цифровых автоматов: начальные языки и стандартные или автоматные языки.

Начальные языки задают функцию переходов и функцию выходов в неявном виде. Поведение автомата описывается в терминах входных и выходных последовательностей, реализуемых оператором, или последовательностей управляющих сигналов, воздействующих на управляющий автомат.

Для описания функционирования абстрактных ЦА на начальном языке можно использовать:

Язык регулярных выражений алгебры событий;

Язык исчисления предикатов;

Язык логических схем алгоритмов (ЛСА);

Язык граф схем алгоритмов (ГСА).

Язык ГСА совместно с языком ЛСА называют одним общим термином: язык операторных схем алгоритмов (ОСА). На практике наиболее часто используется язык ГСА.

3.3.1 Задание цифровых автоматов на стандартных
языках

Стандартные или автоматные языки задают функции переходов выходов в явном виде. К ним относятся таблицы, графы, матрицы переходов и выходов и их аналитическая интерпретация. Для того, чтобы задать автомат, необходимо описать все компоненты вектора
S = (A, Z, W, d, l, a 1).

При табличном способе задания автомат Мили описывается с помощью двух таблиц: таблицы переходов и таблицы выходов. Таблица переходов задает функцию d (табл.3.4.), таблица выходов функцию - l (табл.3.5.). Каждому столбцу табл.3.4 и 3.5 поставлено в соответствие одно состояние из множества А , каждой строке – один входной сигнал из множества Z . На пересечении столбца a m и строки z f в табл.3.4 записывается состояние
a s , в которое должен перейти автомат из состояния a m , под действием входного сигнала z f , т.е. a s = d (a m , z f ). На пересечении столбца a m и строки z f в табл.3.5 записывается выходной сигнал w g , выдаваемый автоматом в состоянии a m при поступлении на его вход сигнала z f , т.е.
w g = l (a m , z f ).

Таблица 3.4 Таблица 3.5

Таблица переходов автомата Мили Таблица выходов автомата Мили
a 1 a 2 a 3 a 4 a 1 a 2 a 3 a 4
z 1 a 2 a 2 a 1 a 1 z 1 w 1 w 1 w 2 w 4
z 2 a 4 a 3 a 4 a 3 z 2 w 5 w 3 w 4 w 5


Для указанных таблиц А = { a 1 , a 2 , a 3 , a 4 }; Z = { z 1 , z 2 };
W = {w 1 , w 2 , w 3 , w 4 , w 5 }.

Автомат Мили может быть задан также одной совмещенной таблицей переходов и выходов (табл.3.6), в которой каждый элемент a s /w g , записанный на пересечении столбца a m и строки z f , определяется следующим образом:

a s = d (a m , z f ); w g = l (a m , z f ).

Автомат Мура задается одной отмеченной таблицей переходов (табл.3.7), в которой каждому столбцу приписаны не только состояния a m , но еще и выходной сигнал w g , соответствующий этому состоянию, где w g = l (a m ). Для табл. 3.7 A = {a 4 , a 2 , a 3 , a 4 }; Z = {z 1 , z 2 };
W = {w 1 , w 2 , w 3 }.

Одним из преимуществ этого способа задания является то, что любая таблица переходов и выходов задает конечный автомат. При этом должны удовлетворяться два условия:

Условие однозначности (детерминированности), которое означает, что для любой пары a m z f задано единственное состояние перехода a s и единственный выходной сигнал w g , выдаваемый на переходе.

Условие полной определенности , которое означает, что для всех возможных пар a m z f всегда указано состояние и выходной сигнал.

Таблица 3.6 Таблица 3.7

Совмещенная таблица переходов и выходов автомата Мили Отмеченная таблица переходов и выходов автомата Мура
a 1 a 2 a 3 a 4 w 3 w 2 w 3 w 1
z 1 a 2 /w 1 a 2 /w 1 a 1 /w 2 a 1 /w 4 a 1 a 2 a 3 a 4
z 2 a 4 /w 5 a 3 /w 3 a 4 /w 4 a 3 /w 5 z 1 a 1 a 3 a 1 a 4
z 2 a 2 a 4 a 4 a 1

Автомат называется неполностью определенным или частичным , если либо функция d определена не на всех парах (a m z f ) Î A x Z , либо функция l определена не на всех указанных парах в случае автомата Мили и на множестве не всех внутренних состояний для автомата Мура. Для частичных автоматов Мили и Мура в рассмотренных таблицах на месте неопределенных состояний и выходных сигналов ставится прочерк.

Граф автомата – это ориентированный граф, вершины которого соответствуют состояниям, а дуги – переходам между ними. Дуга, направленная из вершины a m в вершину a s , задает переход в автомате из состояния a m в состояние a s . В начале этой дуги записывается входной сигнал z f Î Z , вызывающий данный переход: a s = d (a m , z f ). Для графа автомата Мили выходной сигнал w g Î W , формируемый на переходе, записывается в конце дуги, а для автомата Мура рядом с вершиной, отмеченной состоянием a m , в котором он формируется. Если переход в автомате из состояния a m в состояние a s производится под действием нескольких входных сигналов, то дуге графа, направленной из a m в a s , приписываются все эти входные и соответствующие выходные сигналы. Графы автоматов Мили и Мура, построенные по табл.3.6 и 3.7 приведены соответственно на рис.3.7. а, б.

Применительно к графу условия однозначности и полной определенности будут заключены в следующем:

Не существует двух ребер с одинаковыми входными пометками, выходящих из одной и той же вершины;

Для всякой вершины a m и для всякого входного сигнала z f имеется такое ребро, помеченное символом z f , которое выходит из a m .

Рис.3.7. Графы автоматов: a – Мили; б – Мура

При задании графов с большим числом состояний и переходов наглядность теряется, поэтому оказывается предпочтительным задавать этот граф в виде списка – таблицы переходов.

Прямая таблица переходов – таблица, в которой последовательно перечисляются все переходы сначала из первого состояния, затем из второго и т.д. Табл.3.8 – прямая таблица переходов автомата Мили, построенная по графу, приведенному на рис.3.7.а.

В ряде случаев оказывается удобным пользоваться обратной таблицей переходов, в которой столбцы обозначены точно так же, но сначала записываются все переходы в первое состояние, затем во второе и т.д. Табл.3.9 – обратная таблица переходов автомата Мили, построенная по графу, приведенному на рис.3.7,а.

Как и граф таблицы переходов должны удовлетворять условиям однозначности и полноты переходов.

Таблица 3.8 Прямая таблица переходов автомата Мили Таблица 3.9 Обратная таблица переходов автомата Мили
a m (t ) z f (t ) a s (t+ 1) w g (t ) a m (t ) z f (t ) a s (t+ 1) w g (t )
a 1 z 1 a 2 w 1 a 3 z 1 a 1 w 2
z 2 a 4 w 5 a 4 z 1 w 4
a 2 z 1 a 2 w 1 a 1 z 1 a 2 w 1
z 2 a 3 w 3 a 2 z 1 w 1
a 3 z 1 a 1 w 2 a 2 z 2 a 3 w 3
z 2 a 4 w 4 a 4 z 2 w 5
a 4 z 1 a 1 w 4 a 1 z 2 a 4 w 5
z 2 a 3 w 5 a 3 z 2 w 4

Прямая таблица переходов автомата Мура строится так же как и для автомата Мили. Разница лишь в том, что выходной сигнал w g (t ) приписывается состоянию автомата a m (t ) (табл. 3.10), либо выходной сигнал w g (t a s (t+ 1) (табл. 3.11).

Обратная таблица переходов автомата Мура строится так же как и для автомата Мили. Разница лишь в том, что выходной сигнал w g (t +1) приписывается состоянию автомата a s (t+ 1) (табл. 3.12).

В некоторых случаях для задания автомата используются матрицы переходов и выходов , которые представляют собой таблицу с двумя входами. Строки и столбцы таблицы отмечены состояниями. Если существует переход из a m под действием z f в a s с выдачей w g , то на пересечении строки a m и столбца a s записывается пара z f w g . Ясно, что не всякая матрица задает автомат. Как граф и таблица переходов и выходов она должна удовлетворять условиям однозначности и полноты переходов.

Таблица 3.10 Прямая таблица переходов автомата Мура Вариант 1 Таблица 3.11 Прямая таблица переходов автомата Мура Вариант 2
a m (t ) w g (t ) z f (t ) a s (t+ 1) a m (t ) z f (t ) a s (t+ 1) w g (t +1)
a 1 w 3 z 1 a 1 a 1 z 1 a 1 w 3
z 2 a 2 z 2 a 2 w 2
a 2 w 2 z 1 a 3 a 2 z 1 a 3 w 3
z 2 a 4 z 2 a 4 w 1
a 3 w 3 z 1 a 1 a 3 z 1 a 1 w 3
z 2 a 4 z 2 a 4 w 1
a 4 w 1 z 1 a 4 a 4 z 1 a 4 w 1
z 2 a 1 z 2 a 1 w 3
Таблица 3.12 Обратная таблица переходов автомата Мура Вариант 2
a m (t ) z f (t ) a s (t+ 1) w g (t +1)
a 1 z 1 a 1 w 3
a 3 z 1
a 4 z 2
a 1 z 2 a 2 w 2
a 2 z 1 a 3 w 3
a 2 z 2 a 4 w 1
a 3 z 2
a 4 z 1

Системы канонических уравнений (СКУ) и системы выходных функций (СВФ) являются аналитической интерпретацией таблиц переходов и выходов или графов автоматов. СКУ – определяет функции переходов ЦА, а СВФ – определяет функции выходов ЦА.

Каждое состояние ЦА интерпретируется как событие, соответствующее множеству переходов в это состояние:

Для сокращения записи СКУ и СВФ будем в дальнейшем везде, где это возможно, опускать знаки конъюнкции и времени t в правой части уравнений типа (3.10).

Для автомата Мили, заданного табл.3.8 или табл. 3.9 запишем СКУ и СВФ (3.811и 3.12. соответственно):

a 1 (t +1) = z 1 a 3 Ú z 1 a 4 ; a 2 (t +1) = z 1 a 1 Ú z 1 a 2 ; a 3 (t +1) = z 2 a 2 Ú z 2 a 4 ; a 4 (t +1) = z 2 a 1 Ú z 2 a 3 . (3.11) w 1 (t ) = z 1 a 1 Ú z 1 a 2 ; w 2 (t ) = z 1 a 3 ; w 3 (t ) = z 2 a 2 ; w 4 (t ) = z 1 a 4 Ú z 2 a 3; w 5 (t ) = z 2 a 1 Ú z 2 a 4. (3.12)

Запишем СКУ и СВФ для автомата Мура, заданного табл. 3.10 - 3.12, (3.13 и 3.14 соответственно).

Последние материалы раздела:

Анализ стихотворения «Я, отрок, зажигаю свечи» (Блок Александр) Анализ стихотворения Блока «Я, отрок, зажигаю свечи…»
Анализ стихотворения «Я, отрок, зажигаю свечи» (Блок Александр) Анализ стихотворения Блока «Я, отрок, зажигаю свечи…»

Стихотворение А. Блока «Я, отрок, зажигаю свечи» было написано летом 1902 года, когда поэт увлекался мистицизмом и философией. Данное произведение...

Презентация по русскому языку на тему
Презентация по русскому языку на тему " Безударная гласная"(2 класс)

Безударные гласные в корне словаМБОУ СОШ №60 Г.Воронеж Белозёрова Татьяна Безударную гласную в корне слова поверяем ударением Подбираем...

Определение и способы задания конечного автомата
Определение и способы задания конечного автомата

Элементы теории автоматов План: 1. Понятие автомата, принцип работы автомата 2. Способы задания конечных автоматов 3. Общие задачи теории...