Tabela osnovnih trigonometričnih vrednosti. Trigonometrične funkcije

1. Trigonometrične funkcije predstavljati elementarne funkcije, katerega argument je kotiček. Z uporabo trigonometrične funkcije opisuje razmerje med strankama ter ostri koti v pravokotnem trikotniku. Področja uporabe trigonometričnih funkcij so izjemno raznolika. Na primer, vse periodične procese lahko predstavimo kot vsoto trigonometričnih funkcij (Fourierjeva serija). Te funkcije se pogosto pojavljajo pri reševanju diferencialnih in funkcionalnih enačb.

2. Trigonometrične funkcije vključujejo naslednjih 6 funkcij: sinusov, kosinus, tangenta,kotangens, sekant in kosekans. Za vsako od teh funkcij obstaja inverzna trigonometrična funkcija.

3. Geometrijska definicija trigonometrične funkcije lahko priročno vnesete z uporabo enotski krog. Spodnja slika prikazuje krog s polmerom r=1. Na krožnici je označena točka M(x,y). Kot med radij vektorjem OM in pozitivno smerjo osi Ox je enak α.

4. Sinus kot α je razmerje med ordinato y točke M(x,y) in polmerom r:
sinα=y/r.
Ker je r=1, je sinus enak ordinati točke M(x,y).

5. Kosinus kot α je razmerje med absciso x točke M(x,y) in polmerom r:
cosα=x/r

6. Tangenta kot α je razmerje med ordinato y točke M(x,y) in njeno absciso x:
tanα=y/x,x≠0

7. Kotangens kot α je razmerje med absciso x točke M(x,y) in njeno ordinato y:
cotα=x/y,y≠0

8. Sekant kot α je razmerje med polmerom r in absciso x točke M(x,y):
secα=r/x=1/x,x≠0

9. Kosekans kot α je razmerje med polmerom r in ordinato y točke M(x,y):
cscα=r/y=1/y,y≠0

10. V enotskem krogu tvorijo projekciji x, y, točki M(x,y) in polmer r pravokotni trikotnik, v katerem sta x,y kateta, r pa hipotenuza. Zato zgornje definicije trigonometričnih funkcij v dodatku k pravokotni trikotnik so oblikovani na naslednji način:
Sinus kot α je razmerje med nasprotno stranico in hipotenuzo.
Kosinus kot α je razmerje med sosednjim krakom in hipotenuzo.
Tangenta kot α imenujemo nasprotni krak sosednjemu.
Kotangens kot α imenujemo sosednja stranica nasprotni strani.
Sekant kot α je razmerje med hipotenuzo in sosednjim krakom.
Kosekans kot α je razmerje med hipotenuzo in nasprotnim krakom.

11. Graf sinusne funkcije
y=sinx, domena definicije: x∈R, območje vrednosti: −1≤sinx≤1

12. Graf kosinusne funkcije
y=cosx, domena: x∈R, obseg: −1≤cosx≤1

13. Graf funkcije tangente
y=tanx, območje definicije: x∈R,x≠(2k+1)π/2, območje vrednosti: −∞

14. Graf funkcije kotangensa
y=cotx, domena: x∈R,x≠kπ, obseg: −∞

15. Graf funkcije sekante
y=secx, definicijska domena: x∈R,x≠(2k+1)π/2, območje vrednosti: secx∈(−∞,−1]∪∪. Vsi razumejo, da jih zavajajo, a nihče razume, v čem je prevara?

Z matematičnega vidika je Zenon v svoji aporiji jasno prikazal prehod od kvantitete k . Ta prehod pomeni uporabo namesto stalnih. Kolikor razumem, matematični aparat za uporabo spremenljivih merskih enot še ni bil razvit ali pa ni bil uporabljen pri Zenonovi aporiji. Uporaba naše običajne logike nas pripelje v past. Mi pa zaradi vztrajnosti mišljenja na recipročno vrednost dodajamo stalne časovne enote. S fizičnega vidika je to videti kot upočasnjevanje časa, dokler se popolnoma ne ustavi v trenutku, ko Ahil dohiti želvo. Če se čas ustavi, Ahil ne more več prehiteti želve.

Če obrnemo našo običajno logiko, se vse postavi na svoje mesto. Ahil teče s konstantno hitrostjo. Vsak naslednji segment njegove poti je desetkrat krajši od prejšnjega. Skladno s tem je čas, porabljen za njegovo premagovanje, desetkrat manjši od prejšnjega. Če v tej situaciji uporabimo koncept "neskončnosti", potem bi bilo pravilno reči, da bo Ahil dohitel želvo neskončno hitro."

Kako se izogniti tej logični pasti? Ostanite v stalnih časovnih enotah in ne preklopite na recipročne enote. V Zenonovem jeziku je to videti takole:

V času, ki ga potrebuje Ahil, da preteče tisoč korakov, bo želva odplazila sto korakov v isto smer. V naslednjem časovnem intervalu, ki je enak prvemu, bo Ahil pretekel še tisoč korakov, želva pa se bo plazila sto korakov. Zdaj je Ahil osemsto korakov pred želvo.

Ta pristop ustrezno opisuje realnost brez logičnih paradoksov. Vendar to ni popolna rešitev problema. Einsteinova izjava o neustavljivosti svetlobne hitrosti je zelo podobna Zenonovi aporiji "Ahil in želva". Ta problem moramo še preučiti, premisliti in rešiti. In rešitev je treba iskati ne v neskončno velikem številu, ampak v merskih enotah.

Druga zanimiva Zenonova aporija govori o leteči puščici:

Leteča puščica je negibna, saj v vsakem trenutku miruje, in ker v vsakem trenutku miruje, vedno miruje.

V tej aporiji je logični paradoks premagan zelo preprosto - dovolj je pojasniti, da leteča puščica v vsakem trenutku miruje na različnih točkah v prostoru, kar je pravzaprav gibanje. Tukaj je treba opozoriti na drugo točko. Iz ene fotografije avtomobila na cesti ni mogoče ugotoviti niti dejstva njegovega gibanja niti razdalje do njega. Če želite ugotoviti, ali se avto premika, potrebujete dve fotografiji, posneti z iste točke v različnih časovnih točkah, vendar ne morete določiti razdalje od njiju. Za določitev razdalje do avtomobila potrebujete dve fotografiji, posneti iz različnih točk v prostoru v enem trenutku, vendar iz njih ne morete ugotoviti dejstva gibanja (seveda še vedno potrebujete dodatne podatke za izračune, trigonometrija vam bo pomagala ). Posebno pozornost želim opozoriti na to, da sta dve točki v času in dve točki v prostoru različni stvari, ki ju ne smemo mešati, saj ponujata različne možnosti za raziskovanje.

Sreda, 4. julij 2018

Razlike med množico in množico so zelo dobro opisane na Wikipediji. Poglejmo.

Kot lahko vidite, »v nizu ne moreta biti dva enaka elementa«, če pa so v nizu enaki elementi, se tak niz imenuje »multiset«. Razumna bitja ne bodo nikoli razumela takšne absurdne logike. To je raven govorečih papig in dresiranih opic, ki nimajo pameti od besede "popolnoma". Matematiki delujejo kot navadni trenerji in nam pridigajo svoje absurdne ideje.

Nekoč so bili inženirji, ki so gradili most, v čolnu pod mostom, medtem ko so preizkušali most. Če se je most zrušil, je povprečen inženir umrl pod ruševinami svoje stvaritve. Če je most zdržal obremenitev, je nadarjeni inženir zgradil druge mostove.

Ne glede na to, kako se matematiki skrivajo za besedno zvezo »pozor, jaz sem v hiši« ali bolje rečeno »matematika preučuje abstraktne pojme«, obstaja ena popkovina, ki jih neločljivo povezuje z realnostjo. Ta popkovina je denar. Uporabimo matematično teorijo množic za same matematike.

Zelo dobro smo se učili matematiko in zdaj sedimo za blagajno in delimo plače. Matematik torej pride k nam po svoj denar. Celoten znesek mu preštejemo in ga razporedimo po svoji mizi v različne kupčke, v katere damo bankovce enakih vrednosti. Nato iz vsakega kupa vzamemo po en račun in damo matematiku njegov »matematični nabor plače«. Pojasnimo matematiku, da bo preostale račune prejel šele, ko bo dokazal, da množica brez enakih elementov ni enaka množici z enakimi elementi. Tu se začne zabava.

Najprej bo delovala logika poslancev: "To lahko velja za druge, zame pa ne!" Potem nas bodo začeli prepričevati, da imajo bankovci istega apoena različne številke bankovcev, kar pomeni, da jih ni mogoče šteti za iste elemente. V redu, preštejmo plače v kovancih - na kovancih ni številk. Tu se bo matematik začel mrzlično spominjati fizike: različni kovanci imajo različno količino umazanije, kristalna struktura in razporeditev atomov je edinstvena za vsak kovanec ...

In zdaj imam najbolj zanimivo vprašanje: kje je črta, za katero se elementi množice spreminjajo v elemente množice in obratno? Takšna linija ne obstaja – o vsem odločajo šamani, znanost tu niti približno ne laže.

Poglej tukaj. Izberemo nogometne stadione z enako površino igrišča. Območja polj so enaka – kar pomeni, da imamo multimnožico. Če pa pogledamo imena teh istih stadionov, jih dobimo veliko, saj so imena različna. Kot lahko vidite, je ista množica elementov hkrati množica in multimnožica. Katera je pravilna? In tu matematik-šaman-oštar potegne iz rokava asa adutov in nam začne pripovedovati ali o množici ali multimnožici. V vsakem primeru nas bo prepričal, da ima prav.

Da bi razumeli, kako sodobni šamani operirajo s teorijo množic in jo povezujejo z realnostjo, je dovolj odgovoriti na eno vprašanje: kako se elementi enega sklopa razlikujejo od elementov drugega? Pokazal vam bom, brez kakršnih koli "predstavljivo kot enotna celota" ali "ni predstavljivo kot ena sama celota."

Nedelja, 18. marec 2018

Vsota števk števila je ples šamanov s tamburinom, ki nima nobene zveze z matematiko. Da, pri pouku matematike nas učijo najti vsoto števk števila in jo uporabiti, a zato so šamani, da svoje potomce učijo svojih veščin in modrosti, sicer bodo šamani preprosto izumrli.

Potrebujete dokaz? Odprite Wikipedijo in poskusite najti stran "Vsota števk števila." Ona ne obstaja. V matematiki ni formule, s katero bi lahko našli vsoto števk katerega koli števila. Navsezadnje so številke grafični znaki, s katerimi pišemo števila, v matematičnem jeziku pa naloga zveni takole: »Poišči vsoto grafičnih znakov, ki predstavljajo poljubno število.« Matematiki tega problema ne morejo rešiti, šamani pa to z lahkoto.

Ugotovimo, kaj in kako naredimo, da bi našli vsoto števk danega števila. In tako imamo številko 12345. Kaj je treba storiti, da bi našli vsoto števk tega števila? Razmislimo o vseh korakih po vrstnem redu.

1. Zapišite številko na list papirja. Kaj smo storili? Število smo pretvorili v grafični številski simbol. To ni matematična operacija.

2. Eno nastalo sliko razrežemo na več slik, ki vsebujejo posamezne številke. Rezanje slike ni matematična operacija.

3. Pretvarjanje posameznih grafičnih simbolov v številke. To ni matematična operacija.

4. Seštej dobljena števila. Zdaj je to matematika.

Vsota števk števila 12345 je 15. To so »tečaji krojenja in šivanja« šamanov, ki jih uporabljajo matematiki. A to še ni vse.

Z matematičnega vidika ni vseeno, v katerem številskem sistemu zapišemo število. Torej bo v različnih številskih sistemih vsota števk istega števila različna. V matematiki je številski sistem označen kot indeks na desni strani števila. Z velikim številom 12345 si ne želim delati glave, razmislimo o številki 26 iz članka o. Zapišimo to število v dvojiškem, osmiškem, decimalnem in šestnajstiškem številskem sistemu. Ne bomo pogledali vsakega koraka pod mikroskopom; Poglejmo rezultat.

Kot lahko vidite, je v različnih številskih sistemih vsota števk istega števila različna. Ta rezultat nima nobene zveze z matematiko. To je enako, kot če bi določili površino pravokotnika v metrih in centimetrih, dobili bi popolnoma drugačne rezultate.

Ničla je videti enako v vseh številskih sistemih in nima vsote števk. To je še en argument v prid dejstvu, da. Vprašanje za matematike: kako se v matematiki označi nekaj, kar ni številka? Kaj, za matematike ne obstaja nič razen številk? Šamanom to lahko dovolim, znanstvenikom pa ne. Resničnost niso samo številke.

Dobljeni rezultat je treba obravnavati kot dokaz, da so številski sistemi merske enote za števila. Navsezadnje ne moremo primerjati števil z različnimi merskimi enotami. Če enaka dejanja z različnimi merskimi enotami iste količine po primerjavi privedejo do različnih rezultatov, potem to nima nobene zveze z matematiko.

Kaj je prava matematika? To je takrat, ko rezultat matematične operacije ni odvisen od velikosti števila, uporabljene merske enote in od tega, kdo to dejanje izvaja.

Znak na vratih Odpre vrata in reče:

Oh! Ali ni to žensko stranišče?
- Mlada ženska! To je laboratorij za preučevanje nedefilske svetosti duš med njihovim vnebovzetjem v nebesa! Halo na vrhu in puščica navzgor. Kakšno drugo stranišče?

Ženska... Avreol na vrhu in puščica navzdol sta moški.

Če se vam takšno umetniško delo večkrat na dan zasveti pred očmi,

Potem ni presenetljivo, da nenadoma najdete čudno ikono v svojem avtomobilu:

Osebno se trudim, da pri kakajočem človeku vidim minus štiri stopinje (ena slika) (kompozicija večih slik: znak minus, številka štiri, oznaka stopinj). In mislim, da to dekle ni bedak, ki ne pozna fizike. Samo ima močan stereotip dojemanja grafičnih podob. In tega nas matematiki ves čas učijo. Tukaj je primer.

1A ni "minus štiri stopinje" ali "en a". To je "človek, ki se pokaka" ali številka "šestindvajset" v šestnajstiškem zapisu. Tisti ljudje, ki nenehno delajo v tem sistemu številk, samodejno zaznavajo številko in črko kot en grafični simbol.


Ta članek vsebuje tabele sinusov, kosinusov, tangensov in kotangensov. Najprej bomo podali tabelo osnovnih vrednosti trigonometričnih funkcij, to je tabelo sinusov, kosinusov, tangentov in kotangensov kotov 0, 30, 45, 60, 90, ..., 360 stopinj ( 0, π/6, π/4, π/3, π/2, …, 2π radian). Po tem bomo podali tabelo sinusov in kosinusov ter tabelo tangentov in kotangensov V. M. Bradisa in pokazali, kako te tabele uporabiti pri iskanju vrednosti trigonometričnih funkcij.

Navigacija po straneh.

Tabela sinusov, kosinusov, tangensov in kotangensov za kote 0, 30, 45, 60, 90, ... stopinj

Reference.

  • Algebra: Učbenik za 9. razred. povpr. šola/Yu. N. Makarychev, N. G. Mindyuk, K. I. Neshkov, S. B. Suvorova; Ed. S. A. Telyakovsky.: Izobraževanje, 1990. - 272 str.: ilustr
  • Bašmakov M. I. Algebra in začetki analize: Učbenik. za 10-11 razrede. povpr. šola - 3. izd. - M .: Izobraževanje, 1993. - 351 str .: ilustr. - ISBN 5-09-004617-4.
  • Algebra in začetek analize: Proc. za 10-11 razrede. splošno izobraževanje ustanove / A. N. Kolmogorov, A. M. Abramov, Yu P. Dudnitsyn in drugi; Ed. A. N. Kolmogorov, 14. izd.: Izobraževanje, 2004. - il.
  • Gusev V. A., Mordkovič A. G. Matematika (priročnik za vpisnike v tehnične šole): Proc. dodatek.- M.; višje šola, 1984.-351 str., ilustr.
  • Bradis V. M.Štirimestne tabele matematike: Za splošno izobraževanje. učbenik ustanove. - 2. izd. - M.: Bustard, 1999.- 96 str .: ilustr. ISBN 5-7107-2667-2

Najnovejši materiali v razdelku:

Glavni junaki
Glavni junaki "Pasjega srca" Kaj je bilo presajeno v Sharikova

Veliki ruski pisatelj je splošno znan po svojih briljantnih in hkrati humornih delih. Njegove knjige so že dolgo razstavljene v citate ...

Južna zvezna univerza
Južna zvezna univerza

21. maja je Južna zvezna univerza gostila otvoritev “Vrelišče” - prostor za kolektivno delo. "Boiling Points" so ustvarjeni s podporo...

Pojav radioaktivnosti, ki ga je odkril Becquerel, nakazuje, da ... Kaj se imenuje kritična masa urana
Pojav radioaktivnosti, ki ga je odkril Becquerel, nakazuje, da ... Kaj se imenuje kritična masa urana

Test št. 5 Možnost 1 Pojav radioaktivnosti, ki ga je odkril Becquerel, kaže, da... A. Vse snovi so sestavljene iz nedeljivih...