Причины возникновения мембранного потенциала. Мембранный потенциал покоя и действия

История открытия

В 1902 году Юлиус Бернштейн выдвинул гипотезу, согласно которой клеточная мембрана пропускает внутрь клетки ионы К + , и они накапливаются в цитоплазме. Расчет величины потенциала покоя по уравнению Нернста для калиевого электрода удовлетворительно совпал с измеренным потенциалом между саркоплазмой мышцы и окружающей средой, который составлял около - 70 мВ.

Согласно теории Ю. Бернштейна, при возбуждении клетки её мембрана повреждается, и ионы К + вытекают из клетки по концентрационному градиенту до тех пор, пока потенциал мембраны не становится равным нулю. Затем мембрана восстанавливает свою целостность, и потенциал возвращается к уровню потенциала покоя. Это утверждение, относящееся скорее к потенциалу действия , было опровергнуто Ходжкином и Хаксли в 1939 году.

Теорию Бернштейна касательно потенциала покоя подтвердил Кеннет Стюарт Коул (Kenneth Stewart Cole), иногда его инициалы ошибочно пишут как K.C. Cole, из-за его прозвища, Кейси («Kacy»). ПП и ПД изображены на известной иллюстрации Коула и Curtis, 1939. Этот рисунок стал эмблемой Membrane Biophysics Group of the Biophysical Society (см. иллюстрацию).

Общие положения

Для того, чтобы на мембране поддерживалась разность потенциалов, необходимо, чтобы была определенная разность концентрации различных ионов внутри и снаружи клетки.

Концентрации ионов в клетке скелетной мышцы и во внеклеточной среде

Потенциал покоя для большинства нейронов составляет величину порядка −60 мВ - −70 мВ. У клеток невозбудимых тканей на мембране также имеется разность потенциалов, разная для клеток разных тканей и организмов.

Формирование потенциала покоя

ПП формируется в два этапа.

Первый этап: создание незначительной (-10 мВ) отрицательности внутри клетки за счёт неравного асимметричного обмена Na + на K + в соотношении 3: 2. В результате этого клетку покидает больше положительных зарядов с натрием, чем возвращается в неё с калием. Такая особенность работы натрий-калиевого насоса, осуществляющего взаимообмен этих ионов через мембрану с затратами энергии АТФ , обеспечивает его электрогенность.

Результаты деятельности мембранных ионных насосов-обменников на первом этапе формирования ПП таковы:

1. Дефицит ионов натрия (Na +) в клетке.

2. Избыток ионов калия (K +) в клетке.

3. Появление на мембране слабого электрического потенциала (-10 мВ).

Второй этап: создание значительной (-60 мВ) отрицательности внутри клетки за счёт утечки из неё через мембрану ионов K + . Ионы калия K + покидают клетку и уносят с собой из неё положительные заряды, доводя отрицательность до -70 мВ.

Итак, мембранный потенциал покоя - это дефицит положительных электрических зарядов внутри клетки, возникающий за счёт утечки из неё положительных ионов калия и электрогенного действия натрий-калиевого насоса.

См. также

Примечания

Ссылки

Дудель Й., Рюэгг Й., Шмидт Р. и др. Физиология человека: в 3-х томах. Пер. с англ / под ред Р. Шмидта и Г. Тевса. - 3. - М .: Мир, 2007. - Т. 1. - 323 с илл. с. - 1500 экз. - ISBN 5-03-000575-3


Wikimedia Foundation . 2010 .

Смотреть что такое "Потенциал покоя" в других словарях:

    ПОТЕНЦИАЛ ПОКОЯ, электрический потенциал между внутренней и наружной средой клетки, возникающий на ее мембране; у нейронов и мышечных клеток достигает величины 0,05 0,09 В; возникает из за неравномерного распределения и накопления ионов по разные … Энциклопедический словарь

    Мембранный потенциал покоя, разность потенциалов, существующая у живых клеток в состоянии физиол. покоя, между их цитоплазмой и внеклеточной жидкостью. У нервных и мышечных клеток П. п. варьирует обычно в диапазоне 60 90 мВ, причём внутр. сторона …

    потенциал покоя - напряжение покоя — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] Тематики электротехника, основные понятия Синонимы напряжение покоя EN rest potentialresting… … Справочник технического переводчика

    потенциал покоя - Rest(ing) Potential Потенциал покоя Потенциал, существующий между средой, в которой находится клетка, и ее содержимым … Толковый англо-русский словарь по нанотехнологии. - М.

    Потенциал покоя - Потенциал неактивного нейрона. Называется также мембранным потенциалом … Психология ощущений: глоссарий

    потенциал покоя - разность потенциала между содержимым клетки и внеклеточной жидкостью. В нервных клетках п.п. участвует в поддержании готовности клетки к возбуждению. * * * Мембранный биоэлектрический потенциал (около 70мВ) в нервной клетке, находящейся в… … Энциклопедический словарь по психологии и педагогике

    Потенциал покоя - – разность электрических зарядов между наружной и внутренней поверхностями мембраны в состоянии физиологического покоя клетки, регистрируемый до начала действия раздражителя … Словарь терминов по физиологии сельскохозяйственных животных

    Мембранный потенциал, регистрируемый до начала действия раздражителя … Большой медицинский словарь

    - (физиологический) разность потенциалов между содержимым клетки (волокна) и внеклеточной жидкостью; скачок потенциала локализуется на поверхностной мембране, при этом её, внутренняя сторона заряжена электроотрицательно по отношению к… … Большая советская энциклопедия

    Быстрое колебание (спайк) мембранного потенциала, возникающее при возбуждении нервных, мышечных, нек рых железистых и растит, клеток; электрич. сигнал, обеспечивающий быструю передачу информации в организме. Подчиняется правилу «всё или ничего»… … Биологический энциклопедический словарь

Книги

  • 100 способов изменить жизнь. Часть 1 , Парфентьева Лариса. О книге Сборник вдохновляющих историй о том, как изменить жизнь к лучшему, от человека, сумевшего развернуть свою собственную жизнь на 180 градусов. Эта книга родилась из еженедельной рубрики…

Между наружной поверхностью клетки и ее цитоплазмой в состоянии покоя существует разность потенциалов около 0,06-0,09 в, причем поверхность клетки заряжена электроположительно по отношению к цитоплазме. Эту разность потенциалов называют потенциалом покоя или мембранным потенциалом. Точное измерение потенциала покоя возможно только с помощью микроэлектродов, предназначенных для внутриклеточного отведения токов, очень мощных усилителей и чувствительных регистрирующих приборов - осциллографов.

Микроэлектрод (рис. 67, 69) представляет собой тонкий стеклянный капилляр, кончик которого имеет диаметр около 1 мкм. Этот капилляр заполняют солевым раствором, погружают в него металлический электрод и соединяют с усилителем и осциллографом (рис. 68). Как только микроэлектрод прокалывает покрывающую клетку мембрану, луч осциллографа отклоняется вниз из своего исходного положения и устанавливается на новом уровне. Это свидетельствует о наличии разности потенциалов между наружной и внутренней поверхностью клеточной мембраны.

Наиболее полно происхождение потенциала покоя объясняет так называемая мембранно-ионная теория. Согласно этой теории все клетки покрыты мембраной, имеющей неодинаковую проницаемость для различных ионов. В связи с этим внутри клетки в цитоплазме в 30-50 раз больше ионов калия, в 8-10 раз меньше ионов натрия и в 50 раз меньше ионов хлора, чем на поверхности. В состоянии покоя клеточная мембрана более проницаема для ионов калия, чем для ионов натрия. Диффузия положительно заряженных ионов калия из цитоплазмы на поверхность клетки придает наружной поверхности мембраны положительный заряд.

Таким образом, поверхность клетки в покое несет на себе положительный заряд, тогда как внутренняя сторона мембраны оказывается заряженной отрицательно за счет ионов хлора, аминокислот и других крупных органических анионов, которые через мембрану практически не проникают (рис. 70).

Потенциал действия

Если участок нервного или мышечного волокна подвергнуть действию достаточно сильного раздражителя, то в этом участке возникает возбуждение, проявляющееся в быстром колебании мембранного потенциала и называемое потенциалом действия .

Потенциал действия можно зарегистрировать либо с помощью электродов, приложенных к внешней поверхности волокна (внеклеточное отведение), либо микроэлектрода, введенного в цитоплазму (внутриклеточное отведение).

При внеклеточном отведении можно обнаружить, что поверхность возбужденного участка на очень короткий период, измеряемый тысячными долями секунды, становится заряженной электроотрицательно по отношению к покоящемуся участку.

Причина возникновения потенциала действия - изменение ионной проницаемости мембраны. При раздражении проницаемость клеточной мембраны для ионов натрия повышается. Ионы натрия стремятся внутрь клетки, так как, во-первых, они заряжены положительно и их влекут внутрь электростатические силы, во-вторых, концентрация их внутри клетки невелика. В покое клеточная мембрана была малопроницаемой для ионов натрия. Раздражение изменило проницаемость мембраны, и поток положительно заряженных ионов натрия из внешней среды клетки в цитоплазму значительно превышает поток ионов калия из клетки наружу. В результате внутренняя поверхность мембраны становится заряженной положительно, а наружная вследствие потери положительно заряженных ионов натрия отрицательно. В этот момент и регистрируется пик потенциала действия.

Повышение проницаемости мембраны для ионов натрия продолжается очень короткое время. Вслед за этим в клетке возникают восстановительные процессы, приводящие к тому, что проницаемость мембраны для ионов натрия вновь понижается, а для ионов калия возрастает. Поскольку ионы калия также заряжены положительно, то, выходя из клетки, они восстанавливают исходные отношения снаружи и внутри клетки.

Накопления ионов натрия внутри клетки при многократном возбуждении ее не происходит потому, что ионы натрия эвакуируются из нее постоянно за счет действия специального биохимического механизма, называемого "натриевым насосом". Есть данные и об активном транспорте ионов калия с помощью "натрий-калиевого насоса".

Таким образом, согласно мембранно-ионной теории в происхождении биоэлектрических явлений решающее значение имеет избирательная проницаемость клеточной мембраны, обусловливающая разный ионный состав на поверхности и внутри клетки, а следовательно, и разный заряд этих поверхностей. Следует заметить, что многие положения мембранно-ионной теории все еще дискуссионны и нуждаются в дальнейшей разработке.

text_fields

text_fields

arrow_upward

Мембранным потенциалом покоя (МПП) или потенциалом покоя (ПП) называют разность потенци­алов покоящейся клетки между внутренней и наружной сторонами мембраны. Внутренняя сторона мембраны клетки заряжена отрица­тельно по отношению к наружной. Принимая потенциал наружного раствора за нуль, МПП записывают со знаком «минус». Величина МПП зависит от вида ткани и варьирует от -9 до -100 мв. Сле­довательно, в состоянии покоя клеточная мембрана поляризована. Уменьшение величины МПП называют деполяризацией, увеличение - гиперполяризацией, восстановление исходного значения МПП - ре поляризацией мембраны.

Основные положения мембранной теории происхождения МПП сводятся к следующему. В состоянии покоя клеточная мембрана хорошо проницаема для ионов К + (в ряде клеток и для СГ), менее проницаема для Na + и практически непроницаема для внутриклеточ­ных белков и других органических ионов. Ионы К + диффундируют из клетки по концентрационному градиенту, а непроникающие анионы остаются в цитоплазме, обеспечивая появление разности по­тенциалов через мембрану.

Возникающая разность потенциалов препятствует выходу К + из клет­ки и при некотором ее значении наступает равновесие между выходом К + по концентрационному градиенту и входом этих катионов по воз­никшему электрическому градиенту. Мембранный потенциал, при ко­тором достигается это равновесие, называется равновесным потенци­ алом. Его величина может быть рассчитана из уравнения Нернста:

где Е к - равновесный потенциал для К + ; R - газовая постоянная; Т - абсолютная температура; F - число Фарадея; п - валентность К + (+1), [К н + ] - [К + вн ] - наружная и внутренняя концентрации К + —

Если перейти от натуральных логарифмов к десятичным и под­ставить в уравнение числовые значения констант, то уравнение примет вид:

В спинальных нейронах (табл. 1.1) Е к = -90 мв. Величина МПП, измеренная с помощью микроэлектродов заметно ниже — 70 мв.

Таблица 1.1 . Концентрация некоторых ионов внутри и снаружи спинальных мотонейронов млекопитающих

Ион

Концентрация

(ммоль/л Н 2 О)

Разновесный потенциал (мв)

внутри клетки

снаружи клетки

Na + 15,0 150,0
К + 150,0 5,5
Сl — 125,0

Мембранный потенциал покоя = -70 мв

Если мембранный потенциал клетки имеет калиевую природу, то, в соответствии с уравнением Нернста, его величина должна линейно снижаться с уменьшением концентрационного градиента этих ионов, например, при повышении концентрации К + во внеклеточной жид­кости. Однако линейная зависимость величины МПП (Мембранный потенциал покоя) от градиента концентрации К + существует только при концентрации К + во вне­клеточной жидкости выше 20 мМ. При меньших концентрациях К + снаружи клетки кривая зависимости Е м от логарифма отношения концентрации калия снаружи и внутри клетки отличается от теоре­тической. Объяснить установленные отклонения экспериментальной зависимости величины МПП и градиента концентрации К + теорети­чески рассчитанной по уравнению Нернста можно, допустив, что МПП возбудимых клеток определяется не только калиевым, но и натриевым, и хлорным равновесным потенциалами. Рассуждая ана­логично с предыдущим, можно записать:

Величины натриевого и хлорного равновесных потенциалов для спинальных нейронов (табл. 1.1) равны соответственно +60 и -70 мв. Значение Е Cl равно величине МПП. Это свидетельствует о пассив­ном распределении ионов хлора через мембрану в соответстии с химическим и электрическим градиентами. Для ионов натрия химический и электрический градиенты направлены внутрь клетки.

Вклад каждого из равновесных потенциалов в величину МПП определяется соотношением между проницаемостью клеточной мем­браны для каждого из этих ионов. Расчет величины мембранного потенциала производится с помощью уравнения Гольдмана:

Е m - мембранный потенциал; R - газовая постоянная; Т - аб­солютная температура; F - число Фарадея; Р K , P Na и Р Cl - константы проницаемости мембраны для К + Na + и Сl, соответственно; + н ], [ K + вн , [ Na + н [ Na + вн ], [Сl — н ] и[Сl — вн ]- концентрации K + , Na + и Сl снаружи (н) и внутри (вн) клетки.

Подставляя в это уравнение полученные в экспериментальных ис­следованиях концентрации ионов и величину МПП, можно пока­зать, что для гигантского аксона кальмара должно быть следующее соотношение констант проницаемости Р к: P Na: Р С1 = I: 0,04: 0,45. Очевидно, что, поскольку мембрана проницаема для ионов натрия (Р N a =/ 0) и равновесный потенциал для этих ионов имеет знак «плюс», то вход последних внутрь клетки по химическому и элект­рическому градиентам будет уменьшать электроотрицательность ци­топлазмы, т.е. увеличивать МПП (Мембранный потенциал покоя).

При повышении концентрации ионов калия в наружном растворе выше 15 мМ МПП увеличивается и соотношение констант прони­цаемости меняется в сторону более значительного превышения» Р к над P Na и Р С1 . Р к: P Na: Р С1 = 1: 0.025: 0,4. В таких условиях МПП определяется почти исключительно градиентом ионов калия, поэто­му экспериментальная и теоретическая зависимости величины МПП от логарифма отношения концентраций калия снаружи и внутри клетки начинают совпадать.

Таким образом, наличие стационарной разности потенциалов меж­ду цитоплазмой и наружной средой в покоящейся клетке обуслов­лено существующими концентрационными градиентами для К + , Na + и Сl и различной проницаемостью мембраны для этих ионов. Основную роль в генерации МПП играет диффузия ионов калия из клетки в наружный наствор. Наряду с этим, МПП определяется также натриевым и хлорным равновесными потенциалами и вклад каждого из них определяется отношениями между проницаемостями плазматической мембраны клетки для данных ионов.

Все факторы, перечисленные выше, составляют так называемую ионную компоненту МПП (Мембранный потенциал покоя). Поскольку, ни калиевый, ни натриевый равновесные потенциалы не равны МПП. клетка должна поглощать Na + и терять К + . Постоянство концентраций этих ионов в клетке поддерживается за счет работы Na + К + -АТФазы.

Однако роль этого ионного насоса не ограничивается поддержа­нием градиентов натрия и калия. Известно, что натриевый насос электрогенен и при его функционировании возникает чистый поток положительных зарядов из клетки во внеклеточную жидкость, обу­славливающий увеличение электроотрицательности цитоплазмы по отношению к среде. Электрогенность натриевого насоса была выяв­лена в опытах на гигантских нейронах моллюска. Электрофорети-ческая инъекция ионов Na + в тело одиночного нейрона вызывала гиперполяризацию мембраны, во время которой МПП был значи­тельно ниже величины калиевого равновесного потенциала. Указан­ная гиперполяризация ослаблялась при снижении температур рас­твора, в котором находилась клетка, и подавлялась специфическим ингибитором Na + , К + -АТФазы уабаином.

Из сказанного следует, что МПП может быть разделен на две компоненты - «ионную» и «метаболическую». Первая компонента зависит от концентрационных градиентов ионов и мембранных проницаемостей для них. Вторая, «метаболическая», обусловлена актив­ным транспортом натрия и калия и оказывает двоякое влияние на МПП. С одной стороны, натриевый насос поддерживает концент­рационные градиенты между цитоплазмой и внешней средой. С другой, будучи электрогенным, натриевый насос оказывает прямое влияние на МПП. Вклад его в величину МПП зависит от плотности «насосного» тока (ток на единицу плошади поверхности мембраны клетки) и сопротивления мембраны.

Мембранный потенциал действия

text_fields

text_fields

arrow_upward

Если на нерв или мышцу на­нести раздражение выше порога возбуждения, то МПП нерва или мышцы быстро уменьшится и на короткий промежуток времени (миллисекунда) произойдет перезарядка мембраны: ее внутренняя сторона станет заряженной положительно относительно наружной. Это кратковременное изменение МПП, происходящее при возбуж­дении клетки, которое на экране осциллографа имеет форму оди­ночного пика, называется мембранным потенциалом действия (МПД).

МПД в нервной и мышечной тканях возникает при снижении абсолютной величины МПП (деполяризации мембраны) до некото­рого критического значения, называемого порогом генерации МПД. В гигантских нервных волокнах кальмара МПД равен — 60 мВ. При деполяризации мембраны до -45 мВ (порог генерации МПД) воз­никает МПД (рис. 1.15).

Рис. 1.15 Потенциал действия нервного волокна (А) и изменение проводимости мембраны для ионов натрия и калия (Б).

Во время возникновения МПД в аксоне кальмара сопротивление мембраны уменьшается в 25 раз, с 1000 до 40 Ом.см 2 , тогда как электрическая емкость не изменяется. Указанное снижение сопро­тивления мембраны обусловлено увеличением ионной проницаемости мембраны при возбуждении.

По своей амплитуде (100-120 мВ) МПД (Мембранный потенциал действия) на 20-50 мВ превышает величину МПП (Мембранный потенциал покоя). Другими словами, внутренняя сторона мембраны на короткое время становится заряженной положительно по отношению к наружной, - «овершут» или реверсия заряда.

Из уравнения Гольдмана следует, что лишь увеличение проница­емости мембраны для ионов натрия может привести к таким изме­нениям мебранного потенциала. Значение Е к всегда меньше, чем величина МПП, поэтому повышение проницаемости мембраны для К + будет увеличивать абсолютное значение МПП. Натриевый равно­весный потенциал имеет знак «плюс», поэтому резкое увеличение проницаемости мембраны для этих катионов приводит к перезарядке мембраны.

Во время МПД увеличивается проницаемость мембраны для ионов натрия. Расчеты показали, что если в состоянии покоя соотношение констант проницаемости мембраны для К + , Na + и СГ равно 1:0,04:0,45, то при МПД — Р к: P Na: Р = 1: 20: 0,45. Сле­довательно, в состоянии возбуждения мембрана нервного волокна не просто утрачивает свою избирательную ионную проницаемость, а, напротив, из избирательно проницаемой в покое для ионов калия она становится избирательно проницаемой для ионов натрия. Уве­личение натриевой проницаемости мембраны связано с открыванием потенциал-зависимых натриевых каналов.

Механизм, который обеспечивает открывание и закрывание ион­ных каналов, получил название ворот канала. Принято различать активационные (m) и инактивационные (h) ворота. Ионный канал может находиться в трех основных состояниях: закрытом (m-ворота закрыты; h-открыты), открытом (m- и h-ворота открыты) и инактивированном (m-ворота открыты, h- ворота закрыты) (рис 1.16).

Рис. 1.16 Схема положения активационных (m) и инактивационных (h) ворот натриевых каналов, соответствующие закрытому (покой, А), открытому (активация, Б) и инактивированному (В) состояниям.

Деполяризация мембраны, вызываемая раздражающим стимулом, например, электрическим током, открывает m-ворота натриевых ка­налов (переход из состояния А в Б) и обеспечивает появление направленного внутрь потока положительных зарядов - ионов натрия. Это ведет к дальнейшей деполяризации мембраны, что, в свою очередь, увеличивает число открытых натриевых каналов и, следовательно, повышает натриевую проницаемость мембраны. Воз­никает «регенеративная» деполяризация мембраны, в результате ко­торой потенциал внутренней стороны мембраны стремится достичь величины натриевого равновесного потенциала.

Причиной прекращения роста МПД (Мембранный потенциал действия) и реполяризации мембраны клетки является:

а) Увеличение деполяризации мембраны, т.е. когда Е м -» E Na , в результате чего снижается электрохимический градиент для ионов натрия, равный Е м -> E Na . Другими словами, уменьшается сила, «толкающая» натрий внутрь клетки;

б) Деполяризация мембра­ны порождает процесс инактивации натриевых каналов (закрывание h-ворот; состояние В канала), который тормозит рост натриевой проницаемости мембраны и ведет к ее снижению;

в) Деполяризация мембраны увеличивает ее проницаемость для ионов калия. Выходя­щий калиевый ток стремится сместить мембранный потенциал в сторону калиевого равновесного потенциала.

Снижение электрохимического потенциала для ионов натрия и инактивация натриевых каналов уменьшает величину входящего на­триевого тока. В определенный момент времени величина входящего тока натрия сравнивается с возросшим выходящим током - рост МПД прекращается. Когда суммарный выходящий ток превышает входящий, начинается реполяризация мембраны, которая также имеет регенеративный характер. Начавшаяся реполяризация ведет к закры­ванию активационных ворот (m), что уменьшает натриевую прони­цаемость мембраны, ускоряет реполяризацию, а последняя увеличи­вает число закрытых каналов и т.д.

Фаза реполяризации МПД в некоторых клетках (например, в кардиомиоцитах и ряде гладкомышечных клеток) может замедляться, формируя плато ПД, обусловленное сложными изменениями во вре­мени входящих и выходящих токов через мембрану. В последей­ствии МПД может возникнуть гиперполяризация или/и деполяриза­ция мембраны. Это так называемые следовые потенциалы. Следовая гиперполяризация имеет двоякую природу: ионную и метаболичес­ кую. Первая связана с тем, что калиевая проницаемость в нервном волокне мембраны остается некоторое время (десятки и даже сотни миллисекунд) повышенной после генерации МПД и смещает мем­бранный потенциал в сторону калиевого равновесного потенциала. Следовая гиперполяризация после ритмической стимуляции клеток связана преимущественно с активацией электрогенного натриевого насоса, вследствие накопления ионов натрия в клетке.

Причиной деполяризации, развивающейся после генерации МПД (Мембранный потенциал действия), является накопление ионов калия у наружной поверхности мембра­ны. Последнее, как это следует из уравнения Гольдмана, ведет к увеличению МПП (Мембранный потенциал покоя).

С инактивацией натриевых каналов связано важное свойство нервного волокна, называемое рефрактерностью .

Во время абсо­ лютного рефрактерного периода нервное волокно полностью утра­чивает способность возбуждаться при действии раздражителя любой силы.

Относительная рефрактерность , следующая за абсолютной, ха­рактеризуется более высоким порогом возникновения МПД (Мембранный потенциал действия).

Представление о мембранных процессах, происходящих во время возбуждения нервного волокна, служит базой для понимания и яв­ления аккомодации. В основе аккомодации ткани при малой кру­тизне нарастания раздражающего тока лежит повышение порога воз­буждения, опережающее медленную деполяризацию мембраны. По­вышение порога возбуждения почти целиком определяется инакти­вацией натриевых каналов. Роль повышения калиевой проницаемос­ти мембраны в развитии аккомодации состоит в том, что оно при­водит к падению сопротивления мембраны. Вследствие снижения сопротивления скорость деполяризации мембраны становится еще медленнее. Скорость аккомодации тем выше, чем большее число натриевых каналов при потенциале покоя находится в инактивированном состоянии, чем выше скорость развития инактивации и чем выше калиевая проницаемость мембраны.

Проведение возбуждения

text_fields

text_fields

arrow_upward

Проведение возбуждения по нервному волокну осуществляется за счет локальных токов между возбужден­ным и покоящимися участками мембраны. Последовательность со­бытий в этом случае представляется в следующем виде.

При нанесении точечного раздражения на нервное волокно в со­ответствующем участке мембраны возникает потенциал действия. Внутренняя сторона мембраны в данной точке оказывается заря­женной положительно по отношению к соседней, покоящейся. Между точками волокна, имеющими различный потенциал, возни­кает ток (локальный ток), направленный от возбужденного (знак (+) на внутренней стороне мембраны) к невозбужденному (знак (-) на внутренней стороне мембраны) к участку волокна. Этот ток оказы­вает деполяризующее влияние на мембрану волокна в покоящемся участке и при достижении критического уровня деполяризации мем­браны в данном участке возникает МПД (Мембранный потенциал действия). Этот процесс последова­тельно распространяется по всем участкам нервного волокна.

В некоторых клетках (нейронах, гладких мышцах) МПД имеет не натриевую природу, а обусловлен входом ионов Ca 2+ по потенциал-зависимым кальциевым каналам. В кардиомиоцитах генерация МПД связана с входящими натриевым и натрий-кальциевым токами.

Статья на конкурс «био/мол/текст»: Потенциал покоя - это важное явление в жизни всех клеток организма, и важно знать, как он формируется. Однако это сложный динамический процесс, трудный для восприятия целиком, особенно для студентов младших курсов (биологических, медицинских и психологических специальностей) и неподготовленных читателей. Впрочем, при рассмотрении по пунктам, вполне возможно понять его основные детали и этапы. В работе вводится понятие потенциала покоя и выделяются основные этапы его формирования с использованием образных метафор, помогающих понять и запомнить молекулярные механизмы формирования потенциала покоя.

Мембранные транспортные структуры - натрий-калиевые насосы - создают предпосылки для возникновения потенциала покоя. Предпосылки эти - разность в концентрации ионов на внутренней и наружной сторонах клеточной мембраны. Отдельно проявляет себя разность концентрации по натрию и разность концентрации по калию. Попытка ионов калия (K +) выровнять свою концентрацию по обе стороны мембраны приводит к его утечке из клетки и потере вместе с ними положительных электрических зарядов, за счёт чего значительно усиливается общий отрицательный заряд внутренней поверхности клетки. Эта «калиевая» отрицательность составляет бóльшую часть потенциала покоя (−60 мВ в среднем), а меньшую его часть (−10 мВ) составляет «обменная» отрицательность, вызванная электрогенностью самого ионного насоса-обменника.

Давайте разбираться подробнее.

Зачем нам нужно знать, что такое потенциал покоя и как он возникает?

Вы знаете, что такое «животное электричество»? Откуда в организме берутся «биотоки»? Как живая клетка, находящаяся в водной среде, может превратиться в «электрическую батарейку» и почему она моментально не разряжается?

На эти вопросы можно ответить только в том случае, если узнать, как клетка создаёт себе разность электрических потенциалов (потенциал покоя) на мембране.

Совершенно очевидно, что для понимания того, как работает нервная система, необходимо вначале разобраться, как работает её отдельная нервная клетка - нейрон. Главное, что лежит в основе работы нейрона - это перемещение электрических зарядов через его мембрану и появление вследствие этого на мембране электрических потенциалов. Можно сказать, что нейрон, готовясь к своей нервной работе, вначале запасает энергию в электрической форме, а затем использует ее в процессе проведения и передачи нервного возбуждения.

Таким образом, наш самый первый шаг к изучению работы нервной системы - это понять, каким образом появляется электрический потенциал на мембране нервных клеток. Этим мы и займёмся, и назовём этот процесс формированием потенциала покоя .

Определение понятия «потенциал покоя»

В норме, когда нервная клетка находится в физиологическом покое и готова к работе, у неё уже произошло перераспределение электрических зарядов между внутренней и наружной сторонами мембраны. За счёт этого возникло электрическое поле, и на мембране появился электрический потенциал - мембранный потенциал покоя .

Таким образом, мембрана оказывается поляризованной. Это означает, что она имеет разный электрический потенциал наружной и внутренней поверхностей. Разность между этими потенциалами вполне возможно зарегистрировать.

В этом можно убедиться, если ввести внутрь клетки микроэлектрод, соединённый с регистрирующей установкой. Как только электрод попадает внутрь клетки, он мгновенно приобретает некоторый постоянный электроотрицательный потенциал по отношению к электроду, расположенному в окружающей клетку жидкости. Величина внутриклеточного электрического потенциала у нервных клеток и волокон, например, гигантских нервных волокон кальмара, в покое составляет около −70 мВ. Эту величину называют мембранным потенциалом покоя (МПП). Во всех точках аксоплазмы этот потенциал практически одинаков.

Ноздрачёв А.Д. и др. Начала физиологии .

Ещё немного физики. Макроскопические физические тела, как правило, электрически нейтральны, т.е. в них в равных количествах содержатся как положительные, так и отрицательные заряды. Зарядить тело можно, создав в нем избыток заряженных частиц одного вида, например, трением о другое тело, в котором при этом образуется избыток зарядов противоположного вида. Учитывая наличие элементарного заряда (e ), полный электрический заряд любого тела можно представить как q = ±N×e , где N - целое число.

Потенциал покоя - это разность электрических потенциалов, имеющихся на внутренней и наружной сторонах мембраны, когда клетка находится в состоянии физиологического покоя. Его величина измеряется изнутри клетки, она отрицательна и составляет в среднем −70 мВ (милливольт), хотя в разных клетках может быть различной: от −35 мВ до −90 мВ.

Важно учитывать, что в нервной системе электрические заряды представлены не электронами, как в обычных металлических проводах, а ионами - химическими частицами, имеющими электрический заряд. И вообще в водных растворах в виде электрического тока перемещаются не электроны, а ионы. Поэтому все электрические токи в клетках и окружающей их среде - это ионные токи .

Итак, изнутри клетка в покое заряжена отрицательно, а снаружи - положительно. Это свойственно всем живым клеткам, за исключением, разве что, эритроцитов, которые, наоборот, заряжены отрицательно снаружи. Если говорить конкретнее, то получается, что снаружи вокруг клетки будут преобладать положительные ионы (катионы Na + и K +), а внутри - отрицательные ионы (анионы органических кислот, не способные свободно перемещаться через мембрану, как Na + и K +).

Теперь нам всего лишь осталось объяснить, каким же образом всё получилось именно так. Хотя, конечно, неприятно сознавать, что все наши клетки кроме эритроцитов только снаружи выглядят положительными, а внутри они - отрицательные.

Термин «отрицательность», который мы будем применять для характеристики электрического потенциала внутри клетки, пригодится нам для простоты объяснения изменений уровня потенциала покоя. В этом термине ценно то, что интуитивно понятно следующее: чем больше отрицательность внутри клетки - тем ниже в отрицательную сторону от нуля смещён потенциал, а чем меньше отрицательность - тем ближе отрицательный потенциал к нулю. Это намного проще понять, чем каждый раз разбираться в том, что же именно означает выражение «потенциал возрастает» - возрастание по абсолютному значению (или «по модулю») будет означать смещение потенциала покоя вниз от нуля, а просто «возрастание» - смещение потенциала вверх к нулю. Термин «отрицательность» не создаёт подобных проблем неоднозначности понимания.

Сущность формирования потенциала покоя

Попробуем разобраться, откуда берётся электрический заряд нервных клеток, хотя их никто не трёт, как это делают физики в своих опытах с электрическими зарядами.

Здесь исследователя и студента поджидает одна из логических ловушек: внутренняя отрицательность клетки возникает не из-за появления лишних отрицательных частиц (анионов), а, наоборот, из-за потери некоторого количества положительных частиц (катионов)!

Так куда же деваются из клетки положительно заряженные частицы? Напомню, что это покинувшие клетку и скопившиеся снаружи ионы натрия - Na + - и калия - K + .

Главный секрет появления отрицательности внутри клетки

Сразу откроем этот секрет и скажем, что клетка лишается части своих положительных частиц и заряжается отрицательно за счёт двух процессов:

  1. вначале она обменивает «свой» натрий на «чужой» калий (да-да, одни положительные ионы на другие, такие же положительные);
  2. потом из неё происходит утечка этих «наменянных» положительных ионов калия, вместе с которыми из клетки утекают положительные заряды.

Эти два процесса нам и надо объяснить.

Первый этап создания внутренней отрицательности: обмен Na + на K +

В мембране нервной клетки постоянно работают белковые насосы-обменники (аденозинтрифосфатазы, или Na + /K + -АТФазы), встроенные в мембрану. Они меняют «собственный» натрий клетки на наружный «чужой» калий.

Но ведь при обмене одного положительного заряда (Na +) на другой такой же положительный заряд (K +) никакого дефицита положительных зарядов в клетке возникать не может! Правильно. Но, тем не менее, из-за этого обмена в клетке остаётся очень мало ионов натрия, потому что они почти все ушли наружу. И в то же время клетка переполняется ионами калия, которые в неё накачали молекулярные насосы. Если бы мы могли попробовать на вкус цитоплазму клетки, мы бы заметили, что в результате работы насосов-обменников она превратилась из солёной в горько-солёно-кислую, потому что солёный вкус хлорида натрия сменился сложным вкусом довольно-таки концентрированного раствора хлорида калия. В клетке концентрация калия достигает 0,4 моль/л. Растворы хлорида калия в пределах 0,009–0,02 моль/л имеют сладкий вкус, 0,03–0,04 - горький, 0,05–0,1 - горько-солёный, а начиная с 0,2 и выше - сложный вкус, состоящий из солёного, горького и кислого .

Важно здесь то, что обмен натрия на калий - неравный . За каждые отданные клеткой три иона натрия она получает всего два иона калия . Это приводит к потере одного положительного заряда при каждом акте ионного обмена. Так что уже на этом этапе за счёт неравноценного обмена клетка теряет больше «плюсов», чем получает взамен. В электрическом выражении это составляет примерно −10 мВ отрицательности внутри клетки. (Но помните, что нам надо ещё найти объяснение для оставшихся −60 мВ!)

Чтобы легче было запомнить работу насосов-обменников, образно можно выразиться так: «Клетка любит калий!» Поэтому клетка и затаскивает калий к себе, несмотря на то, что его и так в ней полно. И поэтому она невыгодно обменивает его на натрий, отдавая 3 иона натрия за 2 иона калия. И поэтому она тратит на этот обмен энергию АТФ. И как тратит! До 70% всех энергозатрат нейрона может уходить на работу натрий-калиевых насосов. (Вот что делает любовь, пусть она даже и не настоящая!)

Кстати, интересно, что клетка не рождается с готовым потенциалом покоя. Ей его ещё надо создать. Например, при дифференцировке и слиянии миобластов потенциал их мембраны изменяется от −10 до −70 мВ, т.е. их мембрана становится более отрицательной - поляризуется в процессе дифференцировки. А в экспериментах на мультипотентных мезенхимальных стромальных клетках костного мозга человека искусственная деполяризация, противодействующая потенциалу покоя и уменьшающая отрицательность клеток, даже ингибировала (угнетала) дифференцировку клеток .

Образно говоря, можно выразиться так: Создавая потенциал покоя, клетка «заряжается любовью». Это любовь к двум вещам:

  1. любовь клетки к калию (поэтому клетка насильно затаскивает его к себе);
  2. любовь калия к свободе (поэтому калий покидает захватившую его клетку).

Механизм насыщения клетки калием мы уже объяснили (это работа насосов-обменников), а механизм ухода калия из клетки объясним ниже, когда перейдём к описанию второго этапа создания внутриклеточной отрицательности. Итак, результат деятельности мембранных ионных насосов-обменников на первом этапе формирования потенциала покоя таков:

  1. Дефицит натрия (Na +) в клетке.
  2. Избыток калия (K +) в клетке.
  3. Появление на мембране слабого электрического потенциала (−10 мВ).

Можно сказать так: на первом этапе ионные насосы мембраны создают разность концентраций ионов, или градиент (перепад) концентрации, между внутриклеточной и внеклеточной средой.

Второй этап создания отрицательности: утечка ионов K + из клетки

Итак, что начинается в клетке после того, как с ионами поработают её мембранные натрий-калиевые насосы-обменники?

Из-за образовавшегося дефицита натрия внутри клетки этот ион при каждом удобном случае норовит устремиться внутрь : растворённые вещества всегда стремятся выровнять свою концентрацию во всём объёме раствора. Но это у натрия получается плохо, поскольку ионные натриевые каналы обычно закрыты и открываются только при определённых условиях: под воздействием специальных веществ (трансмиттеров) или при уменьшении отрицательности в клетке (деполяризации мембраны).

В то же время в клетке имеется избыток ионов калия по сравнению с наружной средой - потому что насосы мембраны насильно накачали его в клетку. И он, тоже стремясь уравнять свою концентрацию внутри и снаружи, норовит, напротив, выйти из клетки . И это у него получается!

Ионы калия K + покидают клетку под действием химического градиента их концентрации по разные стороны мембраны (мембрана значительно более проницаема для K + , чем для Na +) и уносят с собой положительные заряды. Из-за этого внутри клетки нарастает отрицательность.

Тут ещё важно понять то, что ионы натрия и калия как бы «не замечают» друг друга, они реагируют только «на самих себя». Т.е. натрий реагирует на концентрацию натрия же, но «не обращает внимания» на то, сколько вокруг калия. И наоборот, калий реагирует только на концентрацию калия и «не замечает» натрий. Получается, что для понимания поведения ионов надо по отдельности рассматривать концентрации ионов натрия и калия. Т.е. надо отдельно сравнить концентрацию по натрию внутри и снаружи клетки и отдельно - концентрацию по калию внутри и снаружи клетки, но не имеет смысла сравнивать натрий с калием, как это, бывает, делается в учебниках.

По закону выравнивания химических концентраций, который действует в растворах, натрий «хочет» снаружи войти в клетку; туда же его влечёт и электрическая сила (как мы помним, цитоплазма заряжена отрицательно). Хотеть-то он хочет, но не может, так как мембрана в обычном состоянии плохо его пропускает. Натриевые ионные каналы, имеющиеся в мембране, в норме закрыты. Если все же его заходит немножко, то клетка сразу же обменивает его на наружный калий с помощью своих натрий-калиевых насосов-обменников. Получается, что ионы натрия проходят через клетку как бы транзитом и не задерживаются в ней. Поэтому натрий в нейронах всегда в дефиците.

А вот калий как раз может легко выходить из клетки наружу! В клетке его полно, и она его удержать не может. Он выходит наружу через особые каналы в мембране - «калиевые каналы утечки», которые в норме открыты и выпускают калий .

К + -каналы утечки постоянно открыты при нормальных значениях мембранного потенциала покоя и проявляют взрывы активности при сдвигах мембранного потенциала, которые длятся несколько минут и наблюдаются при всех значениях потенциала. Усиление К + -токов утечки ведёт к гиперполяризации мембраны, тогда как их подавление - к деполяризации. ...Однако, существование канального механизма, ответственного за токи утечки, долгое время оставалось под вопросом. Только сейчас стало ясно, что калиевая утечка - это ток через специальные калиевые каналы.

Зефиров А.Л. и Ситдикова Г.Ф. Ионные каналы возбудимой клетки (структура, функция, патология) .

От химического - к электрическому

А теперь - ещё раз самое главное. Мы должны осознанно перейти от движения химических частиц к движению электрических зарядов .

Калий (K +) положительно заряжен, и поэтому он, когда выходит из клетки, выносит из неё не только самого себя, но и положительный заряд. За ним изнутри клетки к мембране тянутся «минусы» - отрицательные заряды. Но они не могут просочиться через мембрану - в отличие от ионов калия - т.к. для них нет подходящих ионных каналов, и мембрана их не пропускает. Помните про оставшиеся необъяснёнными нами −60 мВ отрицательности? Это и есть та самая часть мембранного потенциала покоя, которую создаёт утечка ионов калия из клетки! И это - большая часть потенциала покоя.

Для этой составной части потенциала покоя есть даже специальное название - концентрационный потенциал . Концентрационный потенциал - это часть потенциала покоя, созданная дефицитом положительных зарядов внутри клетки, образовавшимся за счёт утечки из неё положительных ионов калия .

Ну, а теперь немного физики, химии и математики для любителей точности.

Электрические силы связаны с химическими по уравнению Гольдмана. Его частным случаем является более простое уравнение Нернста , по формуле которого можно рассчитать трансмембранную диффузионную разность потенциалов на основе различной концентрации ионов одного вида по разные стороны мембраны. Так, зная концентрацию ионов калия снаружи и внутри клетки, можно рассчитать калиевый равновесный потенциал E K:

где Е к - равновесный потенциал, R - газовая постоянная, Т - абсолютная температура, F - постоянная Фарадея, К + внеш и K + внутр - концентрации ионов К + снаружи и внутри клетки, соответственно. По формуле видно, что для расчёта потенциала между собой сравниваются концентрации ионов одного вида - K + .

Более точно итоговая величина суммарного диффузионного потенциала, который создаётся утечкой нескольких видов ионов, рассчитывается по формуле Гольдмана-Ходжкина-Катца. В ней учтено, что потенциал покоя зависит от трех факторов: (1) полярности электрического заряда каждого иона; (2) проницаемости мембраны Р для каждого иона; (3) [концентраций соответствующих ионов] внутри (внутр) и снаружи мембраны (внеш). Для мембраны аксона кальмара в покое отношение проводимостей Р K: PNa :P Cl = 1: 0,04: 0,45 .

Заключение

Итак, поте нциал покоя состоит из двух частей:

  1. −10 мВ , которые получаются от «несимметричной» работы мембранного насоса-обменника (ведь он больше выкачивает из клетки положительных зарядов (Na +), чем закачивает обратно с калием).
  2. Вторая часть - это всё время утекающий из клетки калий, уносящий положительные заряды. Его вклад - основной: −60 мВ . В сумме это и дает искомые −70 мВ.

Что интересно, калий перестанет выходить из клетки (точнее, его вход и выход уравниваются) только при уровне отрицательности клетки −90 мВ. В этом случае сравняются химические и электрические силы, проталкивающие калий через мембрану, но направляющие его в противоположные стороны. Но этому мешает постоянно подтекающий в клетку натрий, который несёт с собой положительные заряды и уменьшает отрицательность, за которую «борется» калий. И в итоге в клетке поддерживается равновесное состояние на уровне −70 мВ.

Вот теперь мембранный потенциал покоя окончательно сформирован.

Схема работы Na + /K + -АТФазы наглядно иллюстрирует «несимметричный» обмен Na + на K + : выкачивание избыточного «плюса» в каждом цикле работы фермента приводит к отрицательному заряжению внутренней поверхности мембраны. Чего в этом ролике не сказано, так это того, что АТФаза ответственна за менее чем 20% потенциала покоя (−10 мВ): оставшаяся «отрицательность» (−60 мВ) появляется за счет выхода из клетки через «калиевые каналы утечки» ионов K + , стремящихся выровнять свою концентрацию внутри клетки и вне нее.

Литература

  1. Jacqueline Fischer-Lougheed, Jian-Hui Liu, Estelle Espinos, David Mordasini, Charles R. Bader, et. al.. (2001). Human Myoblast Fusion Requires Expression of Functional Inward Rectifier Kir2.1 Channels . J Cell Biol . 153 , 677-686;
  2. Liu J.H., Bijlenga P., Fischer-Lougheed J. et al. (1998). Role of an inward rectifier K + current and of hyperpolarization in human myoblast fusion . J. Physiol. 510 , 467–476;
  3. Sarah Sundelacruz, Michael Levin, David L. Kaplan. (2008). Membrane Potential Controls Adipogenic and Osteogenic Differentiation of Mesenchymal Stem Cells . PLoS ONE . 3 , e3737;
  4. Павловская М.В. и Мамыкин А.И. Электростатика. Диэлектрики и проводники в электрическом поле. Постоянный ток / Электронное пособие по общему курсу физики. СПб: Санкт-Петербургский государственный электротехнический университет;
  5. Ноздрачёв А.Д., Баженов Ю.И., Баранникова И.А., Батуев А.С. и др. Начала физиологии: Учебник для вузов / Под ред. акад. А.Д. Ноздрачёва. СПб: Лань, 2001. - 1088 с.;
  6. Макаров А.М. и Лунева Л.А. Основы электромагнетизма / Физика в техническом университете. Т. 3;
  7. Зефиров А.Л. и Ситдикова Г.Ф. Ионные каналы возбудимой клетки (структура, функция, патология). Казань: Арт-кафе, 2010. - 271 с.;
  8. Родина Т.Г. Сенсорный анализ продовольственных товаров. Учебник для студентов вузов. М.: Академия, 2004. - 208 с.;
  9. Кольман Я. и Рем К.-Г. Наглядная биохимия. М.: Мир, 2004. - 469 с.;
  10. Шульговский В.В. Основы нейрофизиологии: Учебное пособие для студентов вузов. М.: Аспект Пресс, 2000. - 277 с..

Последние материалы раздела:

Обозначение, произношение, названия и символы химических элементов
Обозначение, произношение, названия и символы химических элементов

В природе существует очень много повторяющихся последовательностей: времена года;время суток;дни недели… В середине 19 века Д.И.Менделеев заметил,...

Анализ произведения «Бежин луг» (И
Анализ произведения «Бежин луг» (И

Часто понять значение художественного произведения помогает отзыв. «Бежин луг» - это произведение, которое входит в знаменитый цикл "Записок...

Роль Троцкого в Октябрьской революции и становлении советской власти
Роль Троцкого в Октябрьской революции и становлении советской власти

«Лента.ру»: Когда началась Февральская революция, Троцкий находился в США. Чем он там занимался и на какие деньги жил?Гусев: К началу Первой...