Используя признак даламбера исследовать ряд на сходимость. Числовые ряды: определения, свойства, признаки сходимости, примеры, решения

Исследование сходимости рядов является важным с точки зрения их оценки и необходимым в случае вычисления суммы ряда. Признаков сходимости рядов несколько, популярный и достаточно прост в применении для рядов с положительными членами - признак сходимости Даламбера . Ниже будет разобран ряд примеров на установление сходимости ряда по признаку Даламбера, советую для себя взять максимум полезного.
Напомним что предпосылками для применения признака Даламбера служит наличие степенной зависимости (2, 3, a в степени n) или факториалов в формуле общего члена ряда. Будет это знаменатель или числитель дроби совсем не имеет значения, важно что имеем подобную зависимость, ну или факториал и степенную зависимость в одном наборе. С факториалами у многих на первых порах возникают проблемы но с практикой Вы заметете что ничего сложного в факториалах нет. Надо только расписать факториал подробно до тех пор когда в числителе или знаменателе дроби поучим одинаковые множителе. На словах это звучит не всем понятно, но следующие примеры помогут Вам в этом разобраться. Ну и самые сложные примеры предполагают наличие комбинаций факториалов и степенных зависимостей, два или более факториала, тоже и для степенной фунции, всевозможные цепочки множителей и другие каверзные комбинации. Ниже приведены базовые примеры с которых и начинается практика проверки сходимости ряда по Даламберу.

Пример: 2.5 Исследовать сходимость рядов
а)
Вычисления: Поскольку данный ряд имеет положительные члены то исследовать его на сходимость можем с помощью признака Даламбера:

Если А<1 ряд сходящийся, А>1 - ряд расходящийся и при A=0 следует использовать другие признаки сходимости рядов.
Записываем общий член ряда и следующий, идущий после него


И находим границу их доли

Поскольку граница бесконечна то по признаку Даламбера ряд расходящийся. Если искать суму ряда то она будет бесконечная.
б)
Вычисления: Члены ряда положительные поетому исследуем на сходимость по признаку Даламбера - записываем формулы последовательных членов ряда

И находим предел отношения следующего члена к предыдущему при n стремящемуся к бесконечности

Граница равна нулю так как показатель стремится к бесконечности, а в скобках имеем значение меньше единицы.
По теореме Даламбера A = 0 <1 ряд сходится!

Пример: 2.8 Исследовать ряды на сходимость:
а)
Вычисления: Как Вы уже убедились все примеры которые здесь рассматриваются следует проверять по признаку Даламбера.
В результате упрощения придем ко второму замечательному пределу - экспоненте

В общем граница меньше единицы следовательно ряд сходится.

Б)
Вычисления: Для проверки на сходимость ряда по признаку Даламбера вычисляем предел

Предел равен 0 (A = 0 <1) следовательно ряд сходится!

Пример: 2.14 Исследовать ряд на сходимость
а)

Вычисления: Находим предел следующего члена ряда к предыдущему

Для удобства чтения формул следующий член ряда выделенный в формулах черным цветом. Хорошо разберитесь как делить факториал на факториал, как показывает статистика множество неверных ответов Вы у Вас выходит в примерах с факториалами.
По признаку Даламбера ряд сходится.
б)
Вычисления: Записываем формулу общего члена ряда и последовавшего за ним

Подставляем их в формулу Даламбера и вычисляем предел

Граница равна нулю 0 <1 , а это значит что данный ряд сходящийся.

Пример: 2.16 Исследовать ряд на сходимость:
а)
Вычисления: По признаку Даламбера проверяем границу общего члена ряда на ограниченность

Превратив множители в числителе и знаменателе дроби сведем функцию в скобках ко второму замечательному пределу

Поскольку граница меньше единицы

то согласно теореме Даламбера ряд сходящийся.
б)
Вычисления: Задан числовой степенной ряд с положительными членами. Найдем предел отношения последующего члена ряда к предыдущему

При исчислении границы считаю все моменты Вам понятны, если нет то Вам нужно прочесть статьи с категории "предел функций".
Получили предел меньше единицы,

следовательно ряд сходится за Даламбером.

Пример: 2.26 Исследовать сходимость ряда:
а)
Вычисления: Для применения признака Даламбера выпишем общий член ряда и последующий за ним


Далее подставим их и найдем предел дроби

Предел равен A = 3/2> 1, а это значит что данный ряд расходящийся.

Б)
Вычисления: Записываем два последовательных члены положительного ряда


Находим границу для оценки сходимости ряда по теореме Даламбера.

В ходе вычислений получим второй замечательный предел (экспоненту) как в числителе, так и в знаменателе. Результирующая граница больше единицы , следовательно делаем вывод о расхождении ряда.

Признак сходимости Даламбера Радикальный признак сходимости Коши Интегральный признак сходимости Коши

Одним из распространенных признаков сравнения, который встречается в практических примерах, является признак Даламбера. Признаки Коши встречаются реже, но тоже весьма популярны. Как всегда, постараюсь изложить материал просто, доступно и понятно. Тема не самая сложная, и все задания в известной степени трафаретны.

Жан Лерон Даламбер – это знаменитый французский математик 18-го века. Вообще, Даламбер специализировался на дифференциальных уравнениях и на основании своих исследований занимался баллистикой, чтобы у Его Величества лучше летали пушечные ядра. Заодно и про числовые ряды не забыл, не зря потом шеренги наполеоновских войск так четко сходились и расходились.

Перед тем как сформулировать сам признак, рассмотрим важный вопрос:
Когда нужно применять признак сходимости Даламбера?

Сначала начнем с повторения. Вспомним случаи, когда нужно применять самый ходовойпредельный признак сравнения . Предельный признак сравнения применяется тогда, когда в общем члене ряда:
1) В знаменателе находится многочлен.
2) Многочлены находятся и в числителе и в знаменателе.
3) Один или оба многочлена могут быть под корнем.

Основные же предпосылки для применения признака Даламбера следующие:

1) В общий член ряда («начинку» ряда) входит какое-нибудь число в степени, например, , и так далее. Причем, совершенно не важно, где эта штуковина располагается, в числителе или в знаменателе – важно, что она там присутствует.

2) В общий член ряда входит факториал. С факториалами мы скрестили шпаги ещё на урокеЧисловая последовательность и её предел . Впрочем, не помешает снова раскинуть скатерть-самобранку:








! При использовании признака Даламбера нам как раз придется расписывать факториал подробно. Как и в предыдущем пункте, факториал может располагаться вверху или внизу дроби.

3) Если в общем члене ряда есть «цепочка множителей», например, . Этот случай встречается редко, но! При исследовании такого ряда часто допускают ошибку – см. Пример 6.

Вместе со степенями или (и) факториалами в начинке ряда часто встречаются многочлены, это не меняет дела – нужно использовать признак Даламбера.

Кроме того, в общем члене ряда может встретиться одновременно и степень и факториал; может встретиться два факториала, две степени, важно чтобы там находилось хоть что-тоиз рассмотренных пунктов – и это как раз предпосылка для использования признака Даламбера.

Признак Даламбера : Рассмотрим положительный числовой ряд . Если существует предел отношения последующего члена к предыдущему: , то:
а) При ряд сходится . В частности, ряд сходится при .
б) При ряд расходится . В частности, ряд расходится при .
в) При признак не дает ответа . Нужно использовать другой признак. Чаще всего единица получается в том случае, когда признак Даламбера пытаются применить там, где нужно использовать предельный признак сравнения.



У кого до сих пор проблемы с пределами или недопонимание пределов, обратитесь к урокуПределы. Примеры решений . Без понимания предела и умения раскрывать неопределенность дальше, к сожалению, не продвинуться.

А сейчас долгожданные примеры.

Пример 1


Мы видим, что в общем члене ряда у нас есть , а это верная предпосылка того, что нужно использовать признак Даламбера. Сначала полное решение и образец оформления, комментарии ниже.

Используем признак Даламбера:


сходится.

(1) Составляем отношение следующего члена ряда к предыдущему: . Из условия мы видим, что общий член ряда . Для того, чтобы получить следующий член ряда необходимо вместо подставить : .
(2) Избавляемся от четырехэтажности дроби. При определенном опыте решения этот шаг можно пропускать.
(3) В числителе раскрываем скобки. В знаменателе выносим четверку из степени.
(4) Сокращаем на . Константу выносим за знак предела. В числителе в скобках приводим подобные слагаемые.
(5) Неопределенность устраняется стандартным способом – делением числителя и знаменателя на «эн» в старшей степени.
(6) Почленно делим числители на знаменатели, и указываем слагаемые, которые стремятся к нулю.
(7) Упрощаем ответ и делаем пометку, что с выводом о том, что, по признаку Даламбера исследуемый ряд сходится.

В рассмотренном примере в общем члене ряда у нас встретился многочлен 2-ой степени. Что делать, если там многочлен 3-ей, 4-ой или более высокой степени? Дело в том, что если дан многочлен более высокой степени, то возникнут трудности с раскрытием скобок. В этом случае можно применять «турбо»-метод решения.

Пример 2

Возьмём похожий ряд и исследуем его на сходимость

Сначала полное решение, потом комментарии:

Используем признак Даламбера:


Таким образом, исследуемый ряд сходится .

(1) Составляем отношение .
(2) Избавляемся от четырехэтажности дроби.
(3) Рассмотрим выражение в числителе и выражение в знаменателе. Мы видим, что в числителе нужно раскрывать скобки и возводить в четвертую степень: , чего делать совершенно не хочется. Кроме того, для тех, кто не знаком с биномом Ньютона, данная задача вообще может оказаться невыполнимой. Проанализируем старшие степени: если мы вверху раскроем скобки , то получим старшую степень . Внизу у нас такая же старшая степень: . По аналогии с предыдущим примером, очевидно, что при почленном делении числителя и знаменателя на у нас в пределе получится единица. Или, как говорят математики, многочлены и – одного порядка роста . Таким образом, вполне можно обвести отношение простым карандашом и сразу указать, что эта штука стремится к единице. Аналогично расправляемся со второй парой многочленов: и , они тоже одного порядка роста , и их отношение стремится к единице.

На самом деле, такую «халтуру» можно было провернуть и в Примере №1, но для многочлена 2-ой степени такое решение смотрится всё-таки как-то несолидно. Лично я поступаю так: если есть многочлен (или многочлены) первой или второй степени, я использую «длинный» способ решения Примера 1. Если попадается многочлен 3-ей и более высоких степеней, я использую «турбо»-метод по образцу Примера 2.

Пример 3

Исследовать ряд на сходимость

Полное решение и образец оформления в конце урока

Следующие два часто используемых достаточных признака сходимости рядов доказываются на основании сравнения исследуемого ряда с рядом геометрической прогрессии, исследованном в § 1, который (ряд) является

а) либо сходящимся

б) либо расходящимся при ½q½³1.

Ниже в формулировках и доказательствах теорем обратные утверждения и условия записываем в скобках сразу за соответствующими прямыми.

Теорема 2.4. Признак Даламбера. Если все члены положительного числового ряда , начиная с некоторого номера М, отличны от нуля an ¹ 0 и удовлетворяют неравенству:

(Dn ³ 1), "n ³ M, (2.6)

то ряд сходится (расходится).

Признак Даламбера в предельной форме. Если для членов указанного выше ряда выполняется условие:

Доказательство. Докажем первое утверждение. Положим bn=qn (bn=1). Тогда справедливы неравенства:

с помощью которых, используя неравенства (2.6), получаем соотношения:

Отсюда, в силу сходимости (расходимости) ряда , на основании теоремы 2.3 получаем сходимость (расходимость) ряда .

Докажем второе утверждение. Из условия (6) и определения верхнего (нижнего) предела последовательности следует, что существуют число e > 0 и номер М такие, что выполняется неравенство

Dn < 1–e (Dn > 1) "n ³ M.

Очевидно, что число (1–e) играет роль числа q в первом утверждении данной теоремы, из которого следует сходимость (расходимость) исследуемого ряда, что и требовалось доказать.

При доказательстве данной теоремы мы пользовались признаком сравнения рядов в форме теоремы 2.3. При доказательстве следующего признака сходимости воспользуемся признаком сравнения рядов в форме теоремы 2.2.

Теорема 2.5. Радикальный признак Коши. Если для членов положительного числового ряда , начиная с некоторого номера М, выполняется неравенство

(Kn ³ 1), "n ³ M, (2.8)

то ряд сходится (расходится).

Радикальный признак Коши в предельной форме. Если для членов указанного выше ряда выполняется условие:

Доказательство. Докажем первое утверждение. Положим bn= qn (bn=1). Тогда из неравенства (7) получаем

an £ bn (an ³ bn),

и так как ряд сходится (расходится), то на основании теоремы 2.2 из полученного неравенства следует сходимость (расходимость) ряда .

Докажем второе утверждение. Из условия (6) и определения верхнего (нижнего) предела последовательности следует, что существуют число e > 0 и номер М такие, что выполняется неравенство

Kn < 1–e (Kn > 1) "n ³ M.

Очевидно, что число (1 – e) играет роль числа q в первом утверждении данной теоремы, из которого следует сходимость (расходимость) исследуемого ряда, что и требовалось доказать.

Замечание 3. В непредельных формулировках теорем 2.4 и 2.5 неравенства

Dn £ q < 1 и Kn £ q < 1 "n Î N

нельзя заменять на неравенства

Dn < 1 и Kn < 1 "n Î N.

Действительно, гармонический ряд расходится (замечание 2), но для него

Замечание 4. Существуют как сходящиеся, так и расходящиеся ряды, для которых выполняются соотношения

,

.

Например, эти неравенства выполняются для гармонического и обобщенного гармонического с показателем 2 рядов

Теорема 8. 5 . Если для знакоположительного ряда существует предел отношения последующего члена ряда к предыдущему при неограниченном возрастании их номеров, т. е. существует предел , то:

1) если r < 1, то ряд сходится; 2) если r > 1, то ряд расходится;

3) если r = 1, то данный признак не позволяет решить вопрос о сходимости ряда (ряд может как сходиться, так и расходиться).

Д о к а з а т е л ь с т в о.1. Пусть . Если r < 1, то всегда найдется число q , удовлетворяющее неравенству r < q < 1. В этом случае по определению предела существует такое число N, что если номер члена ряда n > N , то отношение меньше этого числа q , т.е. . Данное неравенство представим в следующем виде . Отношение является отношением последующего члена ряда к предыдущему для бесконечной убывающей геометрической прогрессии , которая сходится, так как знаменатель прогрессии меньше единицы (q < 1). В соответствии с теоремой 8.4 (третий признак сравнения рядов) ряд сходится.

2. Пусть . Тогда существует такое число q , которое больше единицы, но меньше r , т. е. . В этом случае существует такое число N, что если номер члена ряда n > N , то отношение больше q , т. е. . Тогда по теореме 8.4 ряд расходится.

Данный признак Даламбера является наиболее простым и часто применяемым. Однако он дает ответ на вопрос о сходимости ряда только в тех случаях, когда ряд достаточно быстро сходится или расходится.

Пример 8.7

Находим . Следовательно, ряд сходится.

Пример 8.8 . Исследовать сходимость ряда .

Ряд сходится.

Пример 8.9 . Исследовать сходимость ряда .

Найдем предел . При этом воспользуемся правилом Лопиталя.

Признак сходимости Даламбера

Жан Лерон Даламбер – это знаменитый французский математик 18-го века. Вообще, Даламбер специализировался на дифференциальных уравнениях и на основании своих исследований занимался баллистикой, чтобы у Его Величества лучше летали пушечные ядра. Заодно и про числовые ряды не забыл, не зря потом шеренги наполеоновских войск так четко сходились и расходились.

Перед тем как сформулировать сам признак, рассмотрим важный вопрос: Когда нужно применять признак сходимости Даламбера?

Сначала начнем с повторения. Вспомним случаи, когда нужно применять самый ходовой предельный признак сравнения . Предельный признак сравнения применяется тогда, когда в общем члене ряда: 1) В знаменателе находится многочлен. 2) Многочлены находятся и в числителе и в знаменателе. 3) Один или оба многочлена могут быть под корнем.

Основные же предпосылки для применения признака Даламбера следующие:

1) В общий член ряда («начинку» ряда) входит какое-нибудь число в степени, например,,и так далее. Причем, совершенно не важно, где эта штуковина располагается, в числителе или в знаменателе – важно, что она там присутствует.

2) В общий член ряда входит факториал. Что такое факториал? Ничего сложного, факториал – это просто свёрнутая запись произведения: ……

! При использовании признака Даламбера нам как раз придется расписывать факториал подробно. Как и в предыдущем пункте, факториал может располагаться вверху или внизу дроби.

3) Если в общем члене ряда есть «цепочка множителей», например, . Этот случай встречается редко, но! При исследовании такого ряда часто допускают ошибку – см. Пример 6.

Вместе со степенями или (и) факториалами в начинке ряда часто встречаются многочлены, это не меняет дела – нужно использовать признак Даламбера.

Кроме того, в общем члене ряда может встретиться одновременно и степень и факториал; может встретиться два факториала, две степени, важно чтобы там находилось хоть что-то из рассмотренных пунктов – и это как раз предпосылка для использования признака Даламбера.

Признак Даламбера : Рассмотрим положительный числовой ряд . Если существует предел отношения последующего члена к предыдущему:, то: а) Прирядсходится расходится признак не дает ответа . Нужно использовать другой признак. Чаще всего единица получается в том случае, когда признак Даламбера пытаются применить там, где нужно использовать предельный признак сравнения.

У кого до сих пор проблемы с пределами или недопонимание пределов, обратитесь к уроку Пределы. Примеры решений . Без понимания предела и умения раскрывать неопределенность дальше, к сожалению, не продвинуться.

Радикальный признак Коши

Огюстен Луи Коши – еще более знаменитый французский математик. Биографию Коши вам может рассказать любой студент технической специальности. В самых живописных красках. Не случайно эта фамилия высечена на первом этаже Эйфелевой башни.

Признак сходимости Коши для положительных числовых рядов чем-то похож на только что рассмотренный признак Даламбера.

Радикальный признак Коши: Рассмотрим положительный числовой ряд . Если существует предел:, то: а) Прирядсходится . В частности, ряд сходится при . б) Прирядрасходится . В частности, ряд расходится при . в) Припризнак не дает ответа . Нужно использовать другой признак. Интересно отметить, что если признак Коши не даёт нам ответа на вопрос о сходимости ряда, то признак Даламбера нам тоже не даст ответа. Но если признак Даламбера не даёт ответа, то признак Коши вполне может «сработать». То есть, признак Коши является в этом смысле более сильным признаком.

Когда нужно использовать радикальный признак Коши? Радикальный признак Коши обычно использует в тех случаях, когда общий член ряда ПОЛНОСТЬЮ находится в степени, зависящей от «эн» . Либо когда корень «хорошо» извлекается из общего члена ряда. Есть еще экзотические случаи, но ими голову забивать не будем.

Последние материалы раздела:

Цитаты и фразы из советских фильмов
Цитаты и фразы из советских фильмов

Многосерийная картина про советского разведчика Максима Исаева , внедрившегося в высшие сферы фашистского Третьего Рейха, до сих пор остается одним...

Краткое содержание отрочество глава 2 гроза
Краткое содержание отрочество глава 2 гроза

Сразу после приезда в Москву Николенька ощущает перемены, происшедшие с ним. В его душе находится место не только собственным чувствам и...

Если немеет язык и небо. Немеет язык, причины. Онемение языка: причины в аллергии
Если немеет язык и небо. Немеет язык, причины. Онемение языка: причины в аллергии

Язык является очень чувствительным органом нашего тела, одним из пяти органов чувств. Помимо вкусовой чувствительности, он, подобно коже, обладает...