Дешковский А., Койфман Ю.Г. Метод размерностей в решении задач

1

В статье рассмотрена теория метода размерностей и применение данного метода в физике. Уточнено определение метода размерностей. Перечислены возможности данного метода. С помощью теории размерности можно получить особенно ценные выводы при рассмотрении таких явлений, которые зависят от большого количества параметров, но при этом так, что некоторые из этих параметров в известных случаях становятся несущественными. В рассматриваемом методе искомая закономерность может быть представлена в виде произведения степенных функций физических величин, от которых зависит искомая характеристика. Метод теории размерности играет особенно большую роль при моделировании различных явлений. Таким образом, целью анализа размерностей является получение некоторых сведений о соотношениях, существующих между измеримыми величинами, связанными различными явлениями.

размерность

метод размерностей

физическая величина

1. Алексеевнина А.К. От физических понятий к культуре речи // Фундаментальные исследования. – 2014. – № 6-4. – С. 807-811.

2. Брук Ю.М., Стасенко А.Л. Как физики делают оценки – метод размерностей и порядки физических величин // Сб. «О современной физике – учителю», изд. «Знание», Москва, 1975. – С. 54–131.

3. Власов А.Д., Мурин Б.П. Единицы физических величин в науке и технике. – М.: Энергоатомиздат, 1990. – 27 с.

Ежедневно мы сталкиваемся с различными измерениями. Чтобы не опаздывать, мы устанавливаем будильник (фиксируем время), следим за культурой своего питания (взвешиваем продукты, считаем калории). Единицы измерения всем знакомы, например, скорость движения измеряется в м/c в системе СИ, а в другой - км/час. Единицы измерения придуманы людьми, исторически это связано с развитием социума, научно-технического процесса, торговли и т.д.

В науке закономерности, то есть уравнения связи одних физических величин с другими, необходимо анализировать не с помощью единиц, которые полностью зависят от человека, а с помощью каких-то других понятий, независимых от человека. Поскольку и сами природные закономерности от человека не зависят.

Уравнения связи физических величин анализируют не с помощью единиц измерения, а с помощью каких-то других понятий, однозначных для одной и той же величины. С этой целью и введено понятие «размерности». Размерность - это выражение (без числовых коэффициентов), зависимости величины от основных величин системы, в виде произведения степеней сомножителей, соответствующих основным величинам. Каждой размерности придуман свой символ обозначения, и порядок их расположения строго регламентировано. Например, объем любого тела обозначаться L3, скорость механического движения тела - LT-1 .

Тот факт, что физические соотношения имеют скалярный, векторный или тензорный характер, отражает свойство инвариантности физических законов относительно системы координат.

С другой стороны, для того, чтобы задать значения какой-либо физической величины, необходимо задать единицы ее измерения, и, вообще говоря, систему единиц измерения. Очевидно, что смысл физических соотношений не должен зависеть от выбора системы единиц измерений.

При этом нет необходимости для каждой физической величины задавать строго особую единицу измерения, т.к. физические определения и соотношения позволяют выражать размерности одних физических величин через другие.

Например, определение скорости позволяет выразить размерность скорости v = ds/dt через размерности перемещения ds и времени dt.

В любой системе единиц вводятся основные единицы измерения. Они вводятся из опыта с помощью эталонов. Например, в СИ основными считаются метр, секунда, килограмм, Ампер, Кельвин, моль, кандела.

Выражение произвольной единицы измерения через основные единицы измерения называется размерностью. Для каждой основной величины вводится обозначение: L - длина, М - масса, Т-время и т.д.

Любая произвольная размерность обозначается квадратными скобками от соответствующей величины. Например, [v] - размерность скорости, [Е] - размерность энергии и т.д.

Формула размерности. В теории размерности доказывается, что размерность любой величины представляет собой степенные одночлены вида [N] = LlTtMm... и называется формулой размерности. Иногда в формулах размерности используют не символы основных величин, а их единиц измерения [v] = мс-1, [Е] = кг м2с2 и т.д.

Метод размерностей - одно из самых интересных методов расчета. Суть его заключается в возможности восстанавливать различные соотношения между физическими величинами. Достоинства: быстрая оценка масштабов исследуемых явлений; получение качественных и функциональных зависимостей; восстановление забытых формул на экзаменах, ЕГЭ. А так же специальные задания с использованием метода размерностей, способствует развитию мышления и культуры речи .

В основе метода размерностей лежит составление перечня существенных физических величин, определяющих процесс в данной задаче. Это возможно сделать лишь при сознательном и глубоком понимании, а также при исследовательском, творческом подходе к разбору физической ситуации. Это означает, что использование метода размерностей способствует развития мышления учащихся на уроках физики. Большинство задач школьного курса физики относительно просты с точки зрения рассматриваемого метода, это значительно облегчает его использование в обучении.

Рассмотрим некоторые достоинства и приложения метода размерностей:

Быстрая оценка масштабов исследуемых явлений;

Получение качественных и функциональных зависимостей;

Восстановление забытых формул на экзаменах;

Выполнение некоторых заданий ЕГЭ;

Осуществление проверки правильности решения задач.

Метод размерностей является распространенным и относительно простым методом современной физической науки. Он позволяет с меньшими затратами сил и времени проверить:

1) правильность решения задачи;

2) установить функциональную зависимость между физическими величинами, характеризующими данный процесс;

3) оценить ожидаемый численный результат. Кроме того, учитель физики имеет возможность:

а) опросить за урок большее число учащихся;

б) выяснить знание формул и единиц измерения физических величин;

в) сэкономить время при объяснении нового материала. Использование метода размерностей на учебных занятиях будет стимулировать более углубленное изучение предмета, расширит кругозор учащихся, усилит меж предметную связь.

В физике имеется одна чрезвычайно полезная математическая процедура, называемая анализом размерностей.

Для правильной постановки и обработки экспериментов, результаты которых позволяли бы установить общие закономерности и могли бы быть приложенными к случаям, в которых эксперимент не проводился непосредственно, необходимо вникать в сущность изучаемого вопроса и давать общий качественный анализ.

Возможность такого предварительного качественно-теоретического анализа и выбора системы определяющих безразмерных величин и дает теория размерности, которая приносит много пользы и в теории, и в практике. Все результаты, добываемые с помощью этой теории, получаются всегда очень просто, элементарно и почти без всякого труда. Но применение этой теории к новым задачам требует опыта и понимания сущности явления.

Всякое уравнение в физике выражает соотношение, объективно существующее в природе, независимо от воли того, кто это уравнение пишет. И, конечно, обе части уравнения должны выражаться величинами, измеряемыми в одних и тех же единицах.

Анализ размерностей широко применяется в физике для анализа уравнений, которые бывают не так просты, как F = ma, и в отношении которых присутствует сомнение, верны ли они. Если бы степени хотя бы одной размерности не совпали, то это означало бы стопроцентную гарантию того, что уравнение неверно .

При решении задач, а соответственно и тестов большое значение имеет контроль по установлению размерностей величин входящих в качестве слагаемых в расчетные формулы. Вполне очевидно, что выражение типа «3м-2кг» не имеет смысла, поэтому если в результате решения появляются слагаемые, имеющие разную размерность, то это явный признак того, что была допущена ошибка (чаше всего она носит арифметический характер). Понимая это, необходимо периодически при решении теста или задачи прибегать к анализу размерности.

Польза от применения размерностей не ограничивается процедурой анализа размерностей. Также метод размерностей используется при систематизации физических величин.

Следует только помнить, что размерность при систематизации физических величин - это всё же понятие вспомогательное. Оно помогает решать проблему, но решить проблему не возможно только с помощью размерностей. Да и стремиться к такому подходу вряд ли стоит. Проблему систематизации физических величин решает только сравнение определяющих уравнений, а применение размерностей придает этому решению определенную наглядность.

В свою очередь, физические величины могут быть размерными и безразмерными. Величины, численное значение которых зависит от принятых масштабов, то есть от системы единиц измерения, называются размерными или именованными величинами, например: длина, время, сила, энергия, момент силы и т. д. Величины, численное значение которых не зависит от применяемой системы единиц измерения, называются безразмерными или отвлеченными величинами, например: отношение двух длин, отношение квадрата длины к площади, отношение энергии к моменту силы и др. Это понятие является условным, и поэтому некоторые величины можно рассматривать в одних случаях как размерные, а в других - как безразмерные.

Различные физические величины связаны между собой определенными соотношениями. Поэтому если некоторые из них принять за основные и установить для них какие-то единицы измерения, то единицы измерения остальных величин будут определенным образом выражаться через единицы измерения основных величин. Принятые для основных величин единицы измерения называются основными или первичными, а остальные - производными или вторичными.

В настоящее время большим распространением пользуются физическая и техническая системы единиц измерения. В физической системе за основные единицы измерения приняты сантиметр, грамм-масса и секунда (система CGS),

Метод размерностей работает в очень широком диапазоне порядков величин, он позволяет оценивать размеры Вселенной и характеристики атомного ядра, проникать внутрь звезд и находить ошибки у писателей - фантастов, изучать волны на поверхности лужи и подсчитывать количество взрывчатки при строительстве туннелей в горах.

Основная польза теории размерностей связана с возможностью изучения физических закономерностей в безразмерном виде, не зависящим от выбора систем единиц измерения. Результаты анализа проблемы в безразмерном виде применимы сразу к целому классу явлений.

Суммируя все вышеизложенное, сделаем следующие выводы:

1. Метод размерностей может быть использован в случае, если искомая величина может быть представлена в виде степенной функции.

2. Метод размерностей позволяет качественно решить задачу и получить ответ с точностью до числового коэффициента

3. В некоторых случаях метод размерностей является единственным способом решить задачу и хотя бы оценить ответ.

4. Решение задач методом размерностей является дополнительным или вспомогательным методом, позволяющим лучше понять взаимодействие величин, их влияние друг на друга.

5. Метод размерностей очень прост в математическом отношении.

Данный метод требует особого внимания. Более конкретного и детального изучения, с целью внедрения данного метода в школьный курс физики, для осознанного и целенаправленного использования метода размерности при решении поставленных задач перед учащимися.

Библиографическая ссылка

Полунина М.М., Маркова Н.А. МЕТОД РАЗМЕРНОСТЕЙ В ФИЗИКЕ // Международный студенческий научный вестник. – 2017. – № 4-5.;
URL: http://eduherald.ru/ru/article/view?id=17494 (дата обращения: 05.01.2020). Предлагаем вашему вниманию журналы, издающиеся в издательстве «Академия Естествознания»

Следует подчеркнуть, что конечная цель в рассматриваемом случае остается прежней: нахождение чисел подобия, по которым следует вести моделирование, но решается она при существенно меньшем объеме информации о характере процесса.

Для уяснения дальнейшего кратко рассмотрим некоторые основополагающие понятия. Обстоятельное изложение можно найти в книге А.Н.Лебедева «Моделирование в научно-технических исследованиях». - М.: Радио и связь. 1989. -224 с.

Любой материальный объект обладает рядом свойств, которые допускают количественное выражение. При этом каждое из свойств характеризуется размером определенной физической величины. Единицы некоторых физических величин можно выбирать произвольно, и с их помощью представлять единицы всех остальных. Физические единицы, выбираемые произвольно, называют основными . В международной системе (применительно к механике) это - килограмм, метр и секунда. Остальные величины, выраженные через эти три, называют производными .

Основная единица может обозначаться либо символом соответствующей величины, либо специальным символом. Например, единицы длины - L , единицы массы - M , единица времени - T . Либо, единица длины - метр (м), единица массы - килограмм (кг), единица времени - секунда (с).

Под размерностью понимают символическое выражение (иногда его называют формулой) в виде степенного одночлена, связывающее производную величину с основными. Общий вид этой закономерности имеет вид

где x , y , z - показатели размерности.

Например, размерность скорости

Для безразмерной величины все показатели , и, следовательно, .

Два следующих утверждения достаточно ясны и не нуждаются в каких-либо специальных доказательствах.

Отношение размеров двух объектов является величиной постоянной вне зависимости от того, в каких единицах они выражаются. Так, например, если отношение площади, занимаемой окнами, к площади стен составляет 0,2, то этот результат останется неизменным, если сами площади выражать в мм2, м2или км2.

Второе положение можно сформулировать следующим образом. Любое правильное физическое соотношение должно быть размерностно однородным. Это означает, что все члены, входящие как в правую, так и в левую его части должны иметь одинаковую размерность. Это простое правило четко реализуется в житейском обиходе. Все осознают, что метры можно складывать только с метрами и никак не с килограммами или с секундами. Нужно четко представлять, что правило остается справедливым и при рассмотрении даже самых сложных уравнений.

Метод анализа размерностей базируется на так называемой -теореме (читается: пи-теорема). -теорема устанавливает связь между функцией, выраженной через размерные параметры, и функцией в безразмерной форме. Более полно теорема может сформулирована так:


Любая функциональная зависимость между размерными величинами может быть представлена в виде зависимости между N безразмерными комплексами (числами ), составленными из этих величин. Число этих комплексов , где n - число основных единиц. Как уже отмечалось выше, в гидромеханике (кг, м, с).

Пусть, например, величина А является функцией пяти размерных величин (), т.е.

(13.12)

Из -теоремы следует, что эта зависимость может быть преобразована в зависимость, содержащую два числа ()

(13.13)

где и - безразмерные комплексы, составленные из размерных величин.

Эту теорему иногда приписывают Бэкингему и называют -теоремой Бэкингема. В действительности в её разработку внесли вклад многие крупные ученые, в том числе Фурье, Рябушинский, Рэлей.

Доказательство теоремы выходит за рамки курса. При необходимости оно может быть найдено в книге Л.И.Седова «Методы подобия и размерностей в механике» - М.: Наука, 1972. - 440 с. Подробное обоснование метода приводится и в книге В.А.Веникова и Г.В.Веникова «Теория подобия и моделирования» - М.: Высшая шко­ла, 1984. -439 с. Особенностью этой книги является то, что помимо вопросов, связанных с подобием, в нее включены сведения о методике постановки эксперимента и обработки его результатов.

Использование анализа размерностей для решения конкретных практических задач связано с необходимостью составления функциональной зависимости вида (13.12), которая на следующем этапе обрабатывается специальными приемами, приводящими в конечном итоге к получению чисел (чисел подобия).

Основным, носящим творческий характер, является первый этап, так как получаемые результаты зависят от того, насколько правильно и полно представление исследователя о физической природе процесса. Другими словами, насколько функциональная зависимость (13.12) правильно и полно учитывает все параметры, влияющие на изучаемый процесс. Любая ошибка здесь неизбежно приводит к ошибочным выводам. В истории науки известна так называемая «ошибка Рэлея». Суть ее в том, что изучая задачу о теп­лообмене при турбулентном течении, Рэлей не учел влияние вязкости потока, т.е. не включил её в зависимость (13.12). В результате в конечные соотношения, полученные им, не вошло число подобия Рейнольдса, играющее исключительно важную роль в теплообмене.

Для уяснения сущности метода рассмотрим пример, иллюст­рирующий как общий подход к задаче, так и способ получения чисел подобия .

Необходимо установить вид зависимости, позволяющий определить потери давления либо напора при турбулентном течении в круглых трубах.

Напомним, что эта задача уже рассматривалась в разделе 12.6. Поэтому представляет несомненный интерес установить, как она может быть разрешена с помощью анализа размерностей и дает ли это решение какую-то новую информацию.

Ясно, что падение давления вдоль трубы, обусловленное затратами энергии на преодоление сил вязкого трения обратно пропорционально её длине, поэтому с целью сокращения числа переменных целесообразно рассматривать не , а , т.е. потери давления на единицу длины трубы. Напомним, что отношение , где - потери напора, носит название гидравлического уклона.

Из представлений о физической сущности процесса можно предположить что возникающие потери должны зависеть: от средней скорости течения рабочей среды (v); от размера трубопровода, определяемого его диаметром (d ); от физических свойств транспортируемой среды, характеризуемых её плотностью () и вязкостью (); и, наконец, разумно считать, что потери должны быть как-то связаны с состоянием внутренней поверхностью трубы, т.е. с шероховатостью (k ) ее стенок. Таким образом, зависимость (13.12) в рассматриваемом случае имеет вид

(13.14)

На этом и заканчивается первый и, нужно подчеркнуть, наиболее ответственный этап анализа размерностей.

В соответствии с -теоремой, число влияющих параметров, входящих в зависимость, . Следовательно, число безразмерных комплексов , т.е. после соответствующей обработки (13.14) должна принять вид

(13.15)

Существует несколько способов нахождения чисел . Мы воспользуемся методом, предложенным Рэлеем.

Основным достоинством его является то, что он представляет собой своеобразный алгоритм, приводящий к решению задачи.

Из параметров, входящих в (13.15) необходимо выбрать три любых, но так, чтобы в них входили основные единицы, т.е. метр, килограмм и секунда. Пусть ими будут v, d , . Легко убедиться, что они удовлетворяют поставленному требованию.

Образуются числа в виде степенных одночленов из выбранных параметров, умноженных на один из оставшихся в (13.14)

; (13.16)

; (13.17)

; (13.18)

Теперь задача сводится к нахождению всех показателей степеней. При этом они должны быть подобраны так, чтобы числа были безразмерны.

Для решения этой задачи определим прежде всего размерности всех параметров:

; ;

Вязкость , т.е. .

Параметр , и .

И, наконец, .

Таким образом, размерности чисел будут

Аналогично два других

В начале раздела 13.3 уже отмечалось, что для любой безразмерной величины показатели размерности . Поэтому, например, для числа можем записать

Приравнивая показатели степеней, получаем три уравнения с тремя неизвестными

Откуда находим ; ; .

Подставляя эти значения в (13.6), получаем

(13.19)

Действуя аналогично, легко показать, что

и .

Таким образом, зависимость (13.15) принимает вид

(13.20)

Так как есть неопределяющее число подобия (число Эйлера), то (13.20) можно записать как функциональную зависимость

(13.21)

Следует иметь в виду, что анализ размерностей не дает и принципиально не может дать каких-то числовых значений в получаемых с его помощью соотношениях. Поэтому он должен завершаться анализом результатов и при необходимости их корректировкой, исходя из общих физических представлений. Рассмотрим с этих позиций выражение (13.21). В правую его часть входит квадрат скорости, но эта запись не выражает ничего, кроме того, что скорость возводится в квадрат. Однако, если поделить эту величину на два, т.е. , то как известно из гидромеханики, она приобретает важный физический смысл: удельной кинетической энергии, а - динамическое давление, обусловленное средней скоростью. С учетом этого (13.21) целесообразно записать в виде

(13.22)

Если теперь, как в (12.26), обозначить буквой , то приходим к формуле Дарси

(13.23)

(13.24)

где - гидравлический коэффициент трения, который, как следует из (13.22), является функцией числа Рейнольдса и относительной шероховатости (k/d ). Вид этой зависимости может быть найден только экспериментальным путем.

ЛИТЕРАТУРА

1. Кальницкий Л.А., Добротин Д.А., Жевержеев В.Ф. Специальный курс высшей математики для втузов. М.:Высшая школа, 1976. - 389с.

2. Астарита Дж., Марручи Дж. Основы гидромеханики неньютоновских жидкостей. - М.: Мир, 1978.-307с.

3. Федяевский К.К., Фаддеев Ю.И. Гидромеханика. - М.: Судостроение, 1968. - 567 с.

4. Фабрикант Н.Я. Аэродинамика. - М.: Наука, 1964. - 814 с.

5. Аржаников Н.С. и Мальцев В.Н. Аэродинамика. - М.: Оборонгиз, 1956 - 483 с.

6. Фильчаков П.Ф. Приближенные методы конформных отображений. - К.: Наукова думка, 1964. - 530 с.

7. Лаврентьев М.А., Шабат Б.В. Методы теории функций комплексного переменного. - М.: Наука, 1987. - 688 с.

8. Дейли Дж., Харлеман Д. Механика жидкости. -М.: Энергия, 1971. - 480 с.

9. А.С. Монин, А.М. Яглом «Статистическая гидромеханика» (ч.1. -М.: Наука, 1968. -639 с.)

10. Шлихтинг Г. Теория пограничного слоя. - М.: Наука, 1974. - 711 с.

11. Павленко В.Г. Основы механики жидкости. - Л.: Судостроение, 1988. - 240 с.

12. Альтшуль А.Д. Гидравлические сопротивления. - М.: Недра, 1970. - 215 с.

13. А.А.Гухман «Введение в теорию подобия». - М.: Высшая школа, 1963. - 253 с.

14. С. Клайн «Подобие и приближенные методы». - М.: Мир, 1968. - 302 с.

15. А.А.Гухман «Применение теории подобия к исследованию процессов тепломассообмена. Процессы переноса в движущейся среде». - М.: Высшая шкала,1967. - 302 с.

16. А.Н.Лебедев «Моделирование в научно-технических исследованиях». - М.: Радио и связь. 1989. -224 с.

17. Л.И.Седов «Методы подобия и размерностей в механике» - М.: Наука, 1972. - 440 с.

18. В.А.Веников и Г.В.Веников «Теория подобия и моделирования» - М.: Высшая шко­ла, 1984. -439 с.

1. МАТЕМАТИЧЕСКИЙ АППАРАТ, ИСПОЛЬЗУЕМЫЙ В МЕХАНИКЕ ЖИДКОСТИ................................................................................................ 3

1.1. Векторы и операции над ними................................................... 4

1.2. Операции первого порядка (дифференциальные характеристики поля). ......................................................................................................... 5

1.3. Операции второго порядка........................................................ 6

1.4. Интегральные соотношения теории поля.................................. 7

1.4.1. Поток векторного поля.................................................. 7

1.4.2. Циркуляция вектора поля.............................................. 7

1.4.3. Формула Стокса............................................................. 7

1.4.4. Формула Гаусса-Остроградского.................................. 7

2. ОСНОВНЫЕ ФИЗИЧЕСКИЕ СВОЙСТВА И ПАРАМЕТРЫ ЖИДКОСТИ. СИЛЫ И НАПРЯЖЕНИЯ........................................................................... 8

2.1. Плотность.................................................................................... 8

2.2. Вязкость....................................................................................... 9

2.3. Классификация сил.................................................................... 12

2.3.1. Массовые силы............................................................. 12

2.3.2. Поверхностные силы.................................................... 12

2.3.3. Тензор напряжения...................................................... 13

2.3.4. Уравнение движения в напряжениях........................... 16

3. ГИДРОСТАТИКА................................................................................. 18

3.1. Уравнение равновесия жидкости.............................................. 18

3.2. Основное уравнение гидростатики в дифференциальной форме. ......................................................................................................... 19

3.3. Эквипотенциальные поверхности и поверхности равного давления. ......................................................................................................... 20

3.4. Равновесие однородной несжимаемой жидкости в поле сил тяжести. Закон Паскаля. Гидростатический закон распре­деления давления... 20

3.5. Определение силы давления жидкости на поверхности тел.... 22

3.5.1. Плоская поверхность.................................................... 24

4. КИНЕМАТИКА..................................................................................... 26

4.1. Установившееся и неустановившееся движение жидкости...... 26

4.2. Уравнение неразрывности (сплошности)................................. 27

4.3. Линии тока и траектории.......................................................... 29

4.4. Трубка тока (поверхность тока)............................................... 29

4.5. Струйная модель потока........................................................... 29

4.6. Уравнение неразрывности для струйки................................... 30

4.7. Ускорение жидкой частицы...................................................... 31

4.8. Анализ движения жидкой частицы........................................... 32

4.8.1. Угловые деформации................................................... 32

4.8.2. Линейные деформации................................................. 36

5. ВИХРЕВОЕ ДВИЖЕНИЕ ЖИДКОСТИ.............................................. 38

5.1. Кинематика вихревого движения............................................. 38

5.2. Интенсивность вихря................................................................ 39

5.3. Циркуляция скорости............................................................... 41

5.4. Теорема Стокса......................................................................... 42

6. ПОТЕНЦИАЛЬНОЕ ДВИЖЕНИЕ ЖИДКОСТИ................................ 44

6.1. Потенциал скорости.................................................................. 44

6.2. Уравнение Лапласа................................................................... 46

6.3. Циркуляция скорости в потенциальном поле.......................... 47

6.4. Функция тока плоского течения............................................... 47

6.5. Гидромеханический смысл функции тока................................ 49

6.6. Связь потенциала скорости и функции тока............................ 49

6.7. Методы расчета потенциальных потоков................................ 50

6.8. Наложение потенциальных потоков......................................... 54

6.9. Бесциркуляционное обтекание круглого цилиндра................ 58

6.10. Применение теории функций комплексного переменного к изучению плоских потоков идеальной жидкости............................................ 60

6.11. Конформные отображения..................................................... 62

7. ГИДРОДИНАМИКА ИДЕАЛЬНОЙ ЖИДКОСТИ............................. 65

7.1. Уравнения движения идеальной жидкости.............................. 65

7.2. Преобразование Громеки-Лэмба............................................. 66

7.3. Уравнение движения в форме Громеки-Лэмба........................ 67

7.4. Интегрирование уравнения движения для установившегося течения......................................................................................................... 68

7.5. Упрощенный вывод уравнения Бернулли............................... 69

7.6. Энергетический смысл уравнения Бернулли........................... 70

7.7. Уравнение Бернулли в форме напоров.................................... 71

8. ГИДРОДИНАМИКА ВЯЗКОЙ ЖИДКОСТИ..................................... 72

8.1. Модель вязкой жидкости.......................................................... 72

8.1.1. Гипотеза линейности................................................... 72

8.1.2. Гипотеза однородности................................................ 74

8.1.3. Гипотеза изотропности................................................. 74

8.2 Уравнение движения вязкой жидкости. (уравнение Навье-Стокса) ......................................................................................................... 74

9. ОДНОМЕРНЫЕ ТЕЧЕНИЯ НЕСЖИМАЕМОЙ ЖИДКОСТИ (основы гидравлики)........................................................................................................... 77

9.1. Расход потока и средняя скорость........................................... 77

9.2. Слабодеформированные потоки и их свойства....................... 78

9.3. Уравнение Бернулли для потока вязкой жидкости................. 79

9.4. Физический смысл коэффициента Кориолиса......................... 82

10. КЛАССИФИКАЦИЯ ТЕЧЕНИЙ ЖИДКОСТИ. УСТОЙЧИВОСТЬ ДВИЖЕНИЯ.............................................................................................. 84

11. ЗАКОНОМЕРНОСТИ ЛАМИНАРНОГО РЕЖИМА ТЕЧЕНИЯ В КРУГЛЫХ ТРУБАХ..................................................................................................... 86

12. ОСНОВНЫЕ ЗАКОНОМЕРНОСТИ ТУРБУЛЕНТНОГО ДВИЖЕНИЯ. .................................................................................................................. 90

12.1. Общие сведения....................................................................... 90

12.2. Уравнения Рейнольдса............................................................ 92

12.3. Полуэмпирические теории турбулентности.......................... 93

12.4. Турбулентное течение в трубах............................................. 95

12.5. Степенные законы распределения скоростей....................... 100

12.6. Потери давления (напора) при турбулентном течении в трубах. ......................................................................................................... 100

13. ОСНОВЫ ТЕОРИИ ПОДОБИЯ И МОДЕЛИРОВАНИЯ............... 102

13.1. Инспекционный анализ дифференциальных уравнений..... 106

13.2. Понятие об автомодельности................................................ 110

13.3. Анализ размерностей............................................................ 111

Литература …………………………………………………………………..118

Метод анализа размерностей часто бывает очень эффективен при решении сложных задач механики, в частности, в гидравлике, гидродинамике и аэродинамике. Вместе с представлением о физическом смысле явлений или с привлечением опытных данных он приводит, и притом быстро и просто, к результатам, оценивающим данное явление.

В отечественной литературе методы подобия и размерности изложены в монографии например [Сена]; [Седова]; [Когана]. Признавая, что π-теорема имеет основополагающий характер, мы упоминаем и разъясняем её однажды; в дальнейшем по уровню и общности придерживаемся книги [Коган].

Основные определения.

Существует несколько систем единиц измерений (CGS, СИ и др.) и в каждой из них некоторые физические величины условно принимаются за основные или первичные , т.е. такие, для которых единицы устанавливаются произвольно и независимо. В механике, и в частности, в гидромеханике и гидравлике применяется система L , m , t ,в которой за основные величины принимаются длина L , масса m и время t . Очевидно, что при анализе любого явления единицы измерения массы, времени и длины выбираются независимо друг от друга. Ко вторичным величинам относятся те, которые получаются как комбинации основных. Например, ко вторичным величинам относятся: скорость V = S / t или [V ]= Lt -1 , ускорение a = V / t или [a ]= Lt -2 , плотность ρ= m / W или [ρ ]= mL -3 и многие другие величины. Квадратные скобки, в которые поставлено обозначение величины, означает, что речь идет о размерности единицы этой величины, а символы L ,m, t представляют собой обобщенные обозначения единиц длины, массы и времени без указания конкретного наименования единиц.

В специальных курсах показывается, что формула размерности вторичных величин должна быть степенного вида относительно всех основных физических величин . Допустим, например, что число основных величин выбрано равным трем и за них приняты длина L , масса m и время t . Тогда размерность физической величины y представится формулой

[y ]= L α m β t γ , (.1)

где α , β , γ – постоянные числа (напомним, что квадратные скобки, в которые поставлен символ величины y , означает, что рассматривается размерность этой величины). Формула (.1) называется формулой размерности единицы данной величины или, как часто говорят, кратко- размерностью данной величины.

Необходимо подчеркнуть, что умножать и делить можно физические величины любой размерности, а складывать и вычитать возможно только величины одинаковой размерности.

Пример(.1) . Скорость V может быть выражена как V = L / t = L 1 m 0 t -1 , т.е. α =1 , β =0, γ =-1 .Сила F = ma может быть представлена как F = mL / t ²= L 1 m 1 t -2 , т.е. α =1 , β =1 , γ = -2 .

Не обязательно α , β , γ – рациональные числа, но вводить числа кроме рациональных нет необходимости. Часто размерность физической величины отождествляют с ее единицей в соответствующей системе единиц. Так, например, говорят, что скорость имеет размерность см/с (сантиметр в секунду). Хотя это и не логично, но грубой ошибки в этом нет. В данном случае см/с- это наименование единицы (точно так же, как км/ч, м/с и т.д.).Всегда, если есть необходимость, единицы такого типа позволяют перейти к формулам размерности, в которых масштабы единиц основных величин не фиксированы.

Замечание 1. Разные физические величины могут иметь одинаковые размерности даже в одной и той же системе единиц. Примерами могут служить в механике работа и кинетическая энергия или работа и момент силы (система Lmt ).

Замечание 2. Безразмерными комбинациями физических величин называются такие комбинации, которые в рассматриваемой системе единиц имеют нулевую размерность. Их числовые значения не меняются при изменении масштабов единиц основных величин.

Задача 1. Найти размерности: 1) давления; 2) энергии; 3) коэффициента динамической вязкости; 4) коэффициента кинематической вязкости; 5) коэффициента поверхностного натяжения.

Все результаты, которые могут быть получены с помощью метода анализа размерностей, основаны на двух теоремах.

В физике... нет места для путаных мыслей…
Действительно понимающие природу
Того или иного явления должны получать основные
Законы из соображений размерности. Э. Ферми

Описание той или иной проблемы, обсуждение теоретических и экспериментальных вопросов начинается с качественного описания и оценки того эффекта, который дает данная работа.

При описании какой-то проблемы нужно, прежде всего, оценить порядок величины ожидаемого эффекта, простые предельные случаи и характер функциональной связи величин, описывающих данное явление. Эти вопросы называются качественным описанием физической ситуации.

Одним из наиболее эффективных методов такого анализа является метод размерностей.

Вот некоторые достоинства и приложения метода размерностей:

  • быстрая оценка масштабов исследуемых явлений;
  • получение качественных и функциональных зависимостей;
  • восстановление забытых формул на экзаменах;
  • выполнение некоторых заданий ЕГЭ;
  • осуществление проверки правильности решения задач.

Анализ размерностей применяется в физике еще со времен Ньютона. Именно Ньютон сформулировал тесно связанный с методом размерностей принцип подобия (аналогии).

Учащиеся впервые встречаются с методом размерностей при изучении теплового излучения в курсе физики 11 класса:

Спектральной характеристикой теплового излучения тела является спектральная плотность энергетической светимости r v – энергия электромагнитного излучения, испускаемого за единицу времени с единицы площади поверхности тела в единичном интервале частот.

Единица спектральной плотности энергетической светимости – джоуль на квадратный метр (1 Дж/м 2). Энергия теплового излучения черного тела зависит от температуры и длины волны. Единственной комбинацией этих величин с размерностью Дж/м 2 является kT/ 2 ( = c/v). Точный расчет, проделанный Рэлеем и Джинсом в 1900 г., в рамках классической волновой теории дал следующий результат:

где k – постоянная Больцмана.

Как показал опыт, данное выражение согласуется с экспериментальными данными лишь в области достаточно малых частот. Для больших частот особенно в ультрафиолетовой области спектра формула Рэлея-Джинса неверна: она резко расходится с экспериментом. Методы классической физики оказались недостаточными для объяснения характеристик излучения абсолютно черного тела. Поэтому расхождение результатов классической волновой теории с экспериментом в конце XIX в. получило название “ультрафиолетовой катастрофы”.

Покажем применение метода размерностей на простом и хорошо понятном примере.

Рисунок 1

Тепловое излучение абсолютно черного тела: ультрафиолетовая катастрофа – расхождение классической теории теплового излучения с опытом.

Представим себе, что тело массой m перемещается прямолинейно под действием постоянной силы F. Если начальная скорость тела равна нулю, а скорость в конце пройденного участка пути длиной s равна v, то можно записать теорему о кинетической энергии: .Между величинами F, m, v и s существует функциональная связь.

Предположим, что теорема о кинетической энергии забыта, а понимаем, что функциональная зависимость между v, F, m, и s существует и имеет степенной характер.

Здесь x, y, z – некоторые числа. Определим их. Знак ~ означает, что левая часть формулы пропорциональна правой, то есть , где k – числовой коэффициент, не имеет единиц измерения и с помощью метода размерностей не определяется.

Левая и правая части соотношения (1) имеют одинаковые размерности. Размерности величин v, F, m и s таковы: [v] = м/c = мc -1 , [F] = H = кгмс -2 , [m] = кг, [s] = м. (Символ [A] обозначает размерность величины A.) Запишем равенство размерностей в левой и правой частях соотношения (1):

м c -1 = кг x м x c -2x кг y м Z = кг x+y м x+z c -2x .

В левой части равенства вообще нет килограммов, поэтому и справа их быть не должно.

Это значит, что

Справа метры входят в степени x+z, а слева - в степени 1, поэтому

Аналогично, из сравнения показателей степени при секундах следует

Из полученных уравнений находим числа x, y, z:

x = 1/2, y = -1/2, z = 1/2.

Окончательная формула имеет вид

Возведя в квадрат левую и правую части этого соотношения, получаем, что

Последняя формула есть математическая запись теоремы о кинетической энергии, правда без числового коэффициента.

Принцип подобия, сформулированный Ньютоном, заключается в том, что отношение v 2 /s прямо пропорционально отношению F/m. Например, два тела с разными массами m 1 и m 2 ; будем действовать на них разными силами F 1 и F 2 , но таким образом, что отношения F 1 / m 1 и F 2 / m 2 будут одинаковыми. Под действием этих сил тела начнут двигаться. Если начальные скорости равны нулю, то скорости, приобретаемые телами на отрезке пути длины s, будут равны. Это и есть закон подобия, к которому мы пришли с помощью идеи о равенстве размерностей правой и левой частей формулы, описывающей степенную связь значения конечной скорости со значениями силы, массы и длины пути.

Метод размерностей был введен при построении основ классической механики, однако его эффективное применение для решения физических задач, началось в конце прошлого – в начале нашего века. Большая заслуга в пропаганде этого метода и решения с его помощью интересных и важных задач принадлежит выдающемуся физику лорду Рэлею. В 1915 году Рэлей писал: “ Я часто удивляюсь тому незначительному вниманию, которое уделяется великому принципу подобия, даже со стороны весьма крупных ученых. Нередко случается, что результаты кропотливых исследований преподносятся как вновь открытые “законы”, которые, тем не менее, можно было получить априорно в течение нескольких минут”.

В наши дни физиков уже нельзя упрекнуть в пренебрежительном отношении или в недостаточном внимании к принципу подобия и к методу размерностей. Рассмотрим одну из классических задач Рэлея.

Задача Рэлея о колебаниях шарика на струне.

Пусть между точками A и B натянута струна. Сила натяжения струны F. На середине этой струны в точке C находится тяжелый шарик. Длина отрезка AC (и соответственно CB) равна 1. Масса М шарика намного больше массы самой струны. Струну оттягивают и отпускают. Довольно ясно, что шарик будет совершать колебания. Если амплитуда эти x колебаний много меньше длины струны, то процесс будет гармоническим.

Определим частоту колебаний шарика на струне. Пусть величины , F, M и 1 связанны степенной зависимостью:

Показатели степени x, y, z – числа, которые нам нужно определить.

Выпишем размерности интересующих нас величин в системе СИ:

C -1 , [F] = кгм с -2 , [M] = кг, = м.

Если формула (2) выражает реальную физическую закономерность, то размерности правой и левой частей этой формулы должны совпадать, то есть должно выполняться равенство

с -1 = кг x м x c -2x кг y м z = кг x + y м x + z c -2x

В левую часть этого равенства вообще не входят метры и килограммы, а секунды входят в степени – 1. Это означает, что для x, y и z выполняются уравнения:

x+y=0, x+z=0, -2x= -1

Решая эту систему, находим:

x=1/2, y= -1/2, z= -1/2

Следовательно,

~F 1/2 M -1/2 1 -1/2

Точная формула для частоты отличается от найденной всего в раз ( 2 = 2F/(M1)).

Таким образом, получена не только качественная, но и количественная оценка зависимости для от величин F, M и 1. По порядку величины найденная степенная комбинация дает правильное значение частоты. Оценка всегда интересует по порядку величины. В простых задачах часто коэффициенты, неопределяемые методом размерностей, можно считать числами порядка единицы. Это не есть строгое правило.

При изучении волн рассматриваю качественное прогнозирование скорости звука методом анализа размерностей. Скорость звука ищем как скорость распространения волны сжатия и разрежения в газе. У учащихся не возникает сомнений в зависимости скорости звука в газе от плотности газа и его давления p.

Ответ ищем в виде:

где С – безразмерный множитель, числовое значение которого из анализа размерности найти нельзя. Переходя в (1) к равенству размерностей.

м/c = (кг/м 3) x Па y ,

м/с = (кг/м 3) x (кг м/(с 2 м 2)) y ,

м 1 с -1 = кг x м -3x кг y м y c -2y м -2y ,

м 1 с -1 = кг x+y м -3x + y-2y c -2y ,

м 1 с -1 = кг x+y м -3x-y c -2y .

Равенство размерностей в левой и правой части равенства дает:

x + y = 0, -3x-y = 1, -2y= -1,

x= -y, -3+x = 1, -2x = 1,

x = -1/2 , y = 1/2 .

Таким образом, скорость звука в газе

Формулу (2) при С=1 впервые получил И. Ньютон. Но количественные выводы этой формулы были весьма сложны.

Экспериментальное определение скорости звука в воздухе было выполнено в коллективной работе членов Парижской Академии наук в 1738 г., в которой измерялось время прохождения звуком пушечного выстрела расстояния 30 км.

Повторяя данный материал в 11-м классе, внимание учащихся обращается на то, что результат (2) можно получить для модели изотермического процесса распространения звука с использованием уравнения Менделеева - Клапейрона и понятия плотности:

– скорость распространения звука.

Познакомив учащихся с методом размерностей, даю им этим методом вывести основное уравнение МКТ для идеального газа.

Учащиеся понимают, что давление идеального газа зависит от массы отдельных молекул идеального газа, числа молекул в единице объема – n (концентрации молекул газа) и скорости движения молекул – .

Зная размерности величин, входящих в данное уравнение имеем:

,

,

,

Сравнивая размерности левой и правой части данного равенства, имеем:

Поэтому основное уравнение МКТ имеет такой вид:

- отсюда следует

Из заштрихованного треугольника видно, что

Ответ: В).

Это мы воспользовались методом размерности.

Метод размерностей кроме осуществления традиционной проверки правильности решения задач, выполнения некоторых заданий ЕГЭ, помогает находить функциональные зависимости между различными физическими величинами, но только для тех ситуаций, когда эти зависимости степенные. Таких зависимостей в природе много, и метод размерностей - хороший помощник при решении подобных задач.

С ПРАВДОПОДОБНЫМИ РАССУЖДЕНИЯМИ «ОТ КОНЦА К НАЧАЛУ» ПРИ ОЦЕНКЕ ФАКТОРОВ ТЕХНОЛОГИЧЕСКОГО ПРОЦЕССА

Общие сведения о методе анализа размерностей

При изучении механических явлений вводится ряд понятий, например энергия, скорость, напряжение и т. п., которые характеризуют рассматриваемое явление и могут быть заданы и определены с помощью числа. Все вопросы о движении и о равновесии формулируются как задачи об определении некоторых функций и численных значений для величин, характеризующих явление, причем при решении таких задач в чисто теоретических исследованиях законы природы и различные геометрические (пространственные) соотношения представляют в виде функциональных уравнений – обычно дифференциальных.

Очень часто мы не имеем возможности постановки задачи в математическом виде, так как исследуемое механическое явление настолько сложно, что для него пока нет приемлемой схемы и нет еще уравнений движений. С таким положением мы встречаемся при решении задач в области авиамеханики, гидромеханики, в проблемах изучения прочности и деформаций и т.п. В этих случаях главную роль играют экспериментальные методы исследования, которые дают возможность установить простейшие опытные данные, которые в последующем ложатся в основу стройных теорий со строгим математическим аппаратом. Однако сами эксперименты могут осуществляться только на основе предварительного теоретического анализа. Противоречие разрешается при итерационном процессе исследования, выдвигая предположения и гипотезы и проверяя их экспериментальным путем. При этом основываются на наличии подобия явлений природы, как общего закона. Теория подобия и размерностей является в известной мере «грамматикой» эксперимента.

Размерность величин

Единицы измерения различных физических величин, объединенные на основе их непротиворечивости, образуют систему единиц. В настоящее время применяется Международная система единиц (СИ). В СИ независимо одна от другой выбраны единицы измерения так называемых первичных величин – массы (килограмм, кг), длины (метр, м), времени (секунда, сек, с), сила тока (ампер, а), температуры (градус Кельвина, К) и силы света (свеча, св). Они получили название основных единиц. Единицы измерения остальных, вторичных, величин выражаются через основные. Формула, указывающая зависимость единицы измерения вторичной величины от основных единиц измерения, называется размерностью этой величины.

Размерность вторичной величины находится при помощи определительного уравнения, служащего определением этой величины в математической форме. Например, определительным уравнением для скорости является

.

Будем указывать размерность величины при помощи взятого в квадратные скобки символа этой величины, тогда

, или
,

где [L], [T] – соответственно размерности длины и времени.

Определительным уравнением для силы можно считать второй закон Ньютона

Тогда размерность силы будет иметь следующий вид

[F]=[M][L][T].

Определительное уравнение и формула размерности работы соответственно будут иметь вид

A=Fs и [A]=[M][L][T].

В общем случае будем иметь взаимосвязь

[Q]=[M][L][T] (1).

Обратим внимание на запись взаимосвязи размерностей, это еще нам пригодится.

Теоремы теории подобия

Становление теории подобия в историческом аспекте характеризуют ее три основные теоремы.

Первая теорема подобия формулирует необходимые условия и свойства подобных систем, утверждая, что подобные явления имеют одинаковые критерии подобия в видеыбезразмерных выражений, которые есть мера отношения интенсивности двух физических эффектов, существенных для исследуемого процесса.

Вторая теорема подобия (П-теорема) доказывает возможность приведения уравнения к критериальному виду, не определяя достаточности условий для существования подобия.

Третья теорема подобия указывает на пределы закономерного распространения единичного опыта, ибо подобными явлениями будут те, которые имеют подобные условия однозначности и одинаковые определяющие критерии.

Таким образом, методологическая суть теории размерностей заключается в том, что всякую систему уравнений, заключающую в себе математическую запись законов, управляющих явлением, можно сформулировать как соотношение между безразмерными величинами. Определяющие критерии составляются из независимых между собой величин, которые входят в условия однозначности: геометрические соотношения, физические параметры, краевые (начальные и граничные) условия. Система определяющих параметров должна обладать свойствами полноты. Некоторые из определяющих параметров могут быть физическими размерными постоянными, их будем называть фундаментальными переменными, в отличие от других - регулируемых переменных. Пример, ускорение силы тяжести. Она фундаментальная переменная. В земных условиях – постоянная величина и - переменная в космических условиях.

Для правильного применения анализа размерностей исследователь должен знать характер и число фундаментальных и регулируемых переменных в его эксперименте.

В этом случае имеет место практический вывод из теории анализа размерностей и он заключается в том что, если экспериментатору действительно известны все переменные исследуемого процесса, а математической записи закона в виде уравнения пока еще нет, то он вправе преобразовать их, применив первую часть теоремы Букингема : «Если какое-либо уравнение однозначно относительно размерностей, то его можно преобразовать к соотношению, содержащему набор безразмерных комбинаций величин».

Однородным относительно размерностей является уравнение, форма которого не зависит от выбора основных единиц.

PS. Эмпирические закономерности, как правило, приближенные. Это описания в виде неоднородных уравнений. В своей конструкции они имеют размерные коэффициенты, «работающие» только в определенной системе единиц измерений. В последующем, с накоплением данных, мы выходим на описание в виде однородных уравнений, т. е. независимых от системы единиц измерения.

Безразмерные комбинации , о которых идет речь, представляют собой произведения или отношения величин, составленные таким образом, что в каждой комбинации размерности сокращаются. При этом произведения нескольких размерных величин различной физической природы образуют комплексы , отношение двух размерных величин одной физической природы – симплексы.

Вместо того чтобы варьировать поочередно каждую из переменных, причем изменение некоторых из них может вызывать затруднения, исследователь может варьировать лишь комбинаций . Это обстоятельство существенно упрощает эксперимент и позволяет представить в графической форме и проанализировать полученные данные гораздо быстрее и с большей точностью.

Использование метода анализа размерностей, организуя правдоподобные рассуждения «от конца к началу».

Ознакомившись с приведенными общими сведениями, особо можно обратить внимание на следующие моменты.

Наиболее эффективно применение анализа размерностей при наличии одной безразмерной комбинации. В этом случае экспериментально достаточно определить лишь согласующий коэффициент (достаточно поставить один эксперимент для составления и решения одного уравнения). Задача усложняется с увеличением числа безразмерных комбинаций. Соблюдение требования полного описания физической системы, как правило, возможно (а может быть так считают) при увеличении числа учитываемых переменных. Но при этом увеличивается вероятность усложнения вида функции и, главное, резко возрастает объем экспериментальных работ. Введение дополнительных основных единиц как–то снимает остроту проблемы, но не всегда и не полностью. Тот факт, что теория анализа размерностей со временем развивается, весьма обнадеживает и ориентирует на поиск новых возможностей.

Ну, а если при поиске и формировании набора учитываемых факторов, т. е. по сути, воссоздании структуры исследуемой физической системы воспользоваться организацией правдоподобных рассуждений «от конца к началу» по Паппу?

Для осмысления высказанного предложения и закрепления основ метода анализа размерностей предлагаем разобрать пример установления взаимосвязи факторов, определяющих эффективность взрывной отбойки при подземной разработке рудных месторождений.

Принимая во внимание принципы системного подхода, мы с полным основанием можем судить о том, что два системных взаимодействующих объекта образуют новую динамичную систему. В производственной деятельности этими объектами являются – объект преобразования и предметное орудие преобразования.

При отбойке руды на основе взрывного разрушения таковыми можем считать рудный массив и систему взрывных зарядов (скважин).

При использовании принципов анализа размерностей с организацией правдоподобных рассуждений « от конца к началу» получим следующий ход рассуждений и систему взаимосвязей параметров взрывного комплекса с характеристиками массива.

d м = f 1 (W ,I 0 ,t зам , s )

d м = k 1 W (s t зам ¤ I 0 W) n (1)

I 0 = f 2 (I c ,V бур ,K и )

I 0 = k 2 I c V бур K и (2)

I c = f 3 (t зам ,Q ,A)

I с = k 3 t возд 2/3 Q 2/3 A 1/3 (3)

t возд = f 4 (r заб ,P макс l скв )

t возд = k 4 r заб 1/2 P макс –1/2 l скв (4)

P макс = f 5 (r зар Д)

P макс = k 5 r зар Д 2 (5)

Обозначения и формулы размерности используемых переменных приведем в Таблице.

ПЕРЕМЕННЫЕ

Обозначение

размерности

Диаметр максимального куска дробления

d м

[ L ]

Линия наименьшего сопротивления

[ L ]

Предел прочности пород на сжатие

Период (интервал) замедления взрывания

t зам

[ T ]

Импульс взрыва, приходящийся на 1 м 3 массива

I 0

Удельный расход бурения, м /м 3

V бур

[ L -2 ]

Коэффициент использования скважин под заряд

К ис

Импульс взрыва, приходящийся на 1 м скважины

I c

Энергия взрыва, приходящаяся на 1м заряда

Акустическая жесткость среды(А=gС)

Время воздействия взрыва в скважине

t возд

[ T ]

Плотность забойки

r заб

[ L -3 M ]

Длина скважины

l скв

[ L ]

Максимальное первоначальное давление в скважине

[ L -1 M T -2 ]

Плотность заряда в скважине

r зар

[ L -3 M ]

Скорость детонации ВВ

[ L T -1 ]

Переходя от формулы (5) к формуле(1), раскрывая установленные взаимосвязи, а также имея в виду установленную ранее связь между диаметром среднего и диаметром максимального куска по развалу

d ср = k 6 d м 2/3 , (6)

получим общее уравнение взаимосвязи факторов, определяющих качество дробления:

d ср = kW 2/3 [ s t зам / r заб 1/3 Д -2/3 l скв 2/3 M зар 2|3 U вв 2/3 А 1/3 V бур К ис W ] n (7)

Преобразуем последнее выражение с целью создания безразмерных комплексов, при этом будем иметь в виду:

Q = M зар U вв ; q вв зар V бур К ис ; М заб =0.25 p r заб d скв 2 ;

где М зар – масса заряда ВВ в 1 м длины скважины, кг/м;

М заб – масса забойки в 1 м забойки, кг/м;

U вв – теплотворная способность ВВ, ккал/кг.

В числителе и знаменателе используем зар 1/3 U вв 1/3 (0.25 p d скв 2 ) 1/3 ] . Получим окончательно

Все комплексы и симплексы имеют физический смысл. По опытным данным и данным практики степенной показатель степени n =1/3, а коэффициент k определяется в зависимости от масштаба упрощения выражения (8).

Хотя успех анализа размерностей зависит от правильного понимания физического смысла конкретной задачи, после выбора переменных и основных размерностей этот метод может применяться совершенно автоматически. Следовательно, данный метод легко изложить в рецептурном виде, имея, однако, в виду, что такой «рецепт» требует от исследователя правильного выбора составных компонентов. Единственное, что мы можем здесь сделать, - это дать некоторые общие рекомендации.

Этап 1. Выбрать независимые переменные, оказывающие воздействие на систему. Необходимо рассматривать также размерные коэффициенты и физические константы, если они играют важную роль. Это наиболее ответствен ный этап всей работы.

Этап 2. Выбрать систему основных размерностей, через которую можно выразить единицы, всех выбранных переменных. Обычно используются следующие системы: в механике и динамике жидкостей М L q (иногда FL q ), в термодинамике М L q Т или М L q TH ; в электротехнике и ядерной физике М L q К или М L qm ., при этом температура может либо рассматриваться как основная величина, либо выражаться через молекулярную кинетическую энергию.

Этап 3. Записать размерности выбранных независимых переменных и составить безразмерные комбинации. Решение будет правильным, если: 1) каждая комбинация является безразмерной; 2) число комбинаций не меньше предсказываемого p-теоремой; 3) каждая переменная встречается в комбинациях хотя бы один раз.

Этап 4. Изучить полученные комбинации с точки зрения их приемлемости, физического смысла и (если должен использоваться метод наименьших квадратов) концентрации неопределенности по возможности в одной комбинации. Если комбинации не удовлетворяют этим критериям, то можно: 1) получить другое решение уравнений для показателей степеней, чтобы найти лучший набор комбинаций; 2) выбрать другую систему основных размерностей и проделать всю работу с самого начала; 3) проверить правильность выбора независимых переменных.

Этап 5. Когда будет получен удовлетворительный набор безразмерных комбинаций, исследователь может составить план изменения комбинаций, варьируя в своем оборудовании значения выбранных переменных. Планирование экспериментов следует рассмотреть особо.

При использовании метода анализа размерности с организацией правдоподобных рассуждений «от конца к началу» необходимо ввести серьезные корректуры и особенно на первом этапе.

Краткие выводы

Сегодня можно сформировать концептуальные положения научно-исследовательской работы по уже сложившемуся нормативному алгоритму. Пошаговое следование позволяет упорядочить поиск темы и определение ее этапов выполнения с выходом на научные положения, рекомендации. Знание содержания отдельных процедур способствует их экспертной оценке и отбору наиболее приемлемых и эффективных.

Ход научного исследования можно представить в виде логической схемы, определившись в процессе выполнения НИР, выделяя три стадии, характерные для любой деятельности:

Подготовительная стадия : Ее еще можно назвать стадией методологической подготовки исследования и формирования методологического сопровождения НИР. Состав работ следующий. Определение проблемы, разработка концептуального описания предмета исследования и определение (формулировка) темы исследования. Составление программы исследования с постановкой задач и разработкой плана их решения. Обоснованный выбор методов исследований. Разработка методики экспериментальных работ.

Основная стадия : - исполнительная (технологическая), реализация программы и плана исследования.

Заключительная стадия : - обработка результатов исследования, формулировка основных положений, рекомендаций, экспертиза.

Научные положения - это новая научная истина, - это то, что нужно и можно защищать. Формулировка научных положений может быть математическая или логическая. Научные положения помогают делу, решению проблемы. Научные положения должны быть адресными, т.е. отражать (содержать) тему, для которой они решались. Чтобы осуществить общую увязку содержания НИР со стратегией ее выполнения рекомендуется до и (или) после разработки указанных положений поработать над структурой отчета о НИР. В первом случае – работа над структурой отчета имеет даже эвристический потенциал, способствует осмыслению идей НИР, во втором случае – выступает своего рода проверкой стратегии и обратной связью управления НИР.

Будем помнить о том, что есть логика поиска, выполнения работы и логика изложения . Первая диалектическая – динамичная, с циклами, возвратами, трудно формализуемая, вторая логика статического состояния, формальная, т.е. имеющая строгую определенную форму.

Как вывод, желательно работу над структурой отчета не прекращать в течение всего времени выполнения НИР и тем самым эпизодически «сверять часы ДВУХ ЛОГИК ».

Повышению эффективности работы над концепцией способствует систематизация современных проблем горного дела на административном уровне.

При методологическом сопровождении научно-исследовательской работы часто встречаемся ситуации, когда теоретические положения по конкретной проблеме еще не достаточно полно разработаны. Уместно воспользоваться методологическим «лизингом». В качестве примера подобного подхода и возможного его использования представляет интерес метод анализа размерностей с организацией правдоподобных рассуждений «от конца к началу».

Основные термины и понятия

Объект и предмет деятельности

Актуальность

Горная технология

Концепция

Объект горной технологии

Цель и целеполагание

Средства горной технологии

Проблема Проблемная ситуация

Структура

Физико-технический эффект

Стадии и этапы НИР

Научное положение

Теоремы теории подобия

Размерность

Основные единицы

Исследователем природы является опыт. Он не обманывает никогда... Надо производить опыты, изменяя обстоятельства, пока не извлечем из них общих правил, потому, что опыт доставляет истинные правила.

Леонардо да Винчи

Последние материалы раздела:

Скачать презентацию об общероссийском дне библиотек
Скачать презентацию об общероссийском дне библиотек

Загадочную библиотеку какого русского монарха до сих пор ищут в таинственных кремлёвских подземельях? а)Ивана Грозного б) Петра I в) Бориса...

Урок по окружающему миру на тему:
Урок по окружающему миру на тему: "Когда мы станем взрослыми" (1 класс)

Многие дети задаются вопросом «Когда мы встанем взрослыми?». Кажется, что взрослая жизнь более интересная и разнообразная, однако это не совсем...

Дешковский А., Койфман Ю.Г. Метод размерностей в решении задач. Международный студенческий научный вестник Основные понятия теории моделирования
Дешковский А., Койфман Ю.Г. Метод размерностей в решении задач. Международный студенческий научный вестник Основные понятия теории моделирования

1 В статье рассмотрена теория метода размерностей и применение данного метода в физике. Уточнено определение метода размерностей. Перечислены...